
PHYS 409: Computational Methods in Physics

Computer Simulations in Physics

Theory

Three Ways of Doing Physics

Experiment Simulation

Moore’s Law (Transistor Count)

Number of Floating Point Operations (FLOPS) performed
by the fastest supercomputer doubles every 1-2 years.

Moore’s Law (FLOPS)

Summit

(200 petaFLOPS)

iPad

i9 desktop computer

https://
www.olcf.ornl.gov/

summit/

• 10 billion particles

• 20 million galaxies

• 13.6 billion years

Cosmology:
Millenium
Simulation

https://wwwmpa.mpa-garching.mpg.de/galform/
virgo/millennium/

• NASA/Goddard

Astrophysics: Simulation of 2 Colliding
Black Holes

https://www.youtube.com/watch?v=i2u-7LMhwvE
https://www.nasa.gov/feature/goddard/2018/new-simulation-sheds-light-on-spiraling-supermassive-black-holes

• Berkeley Labs NERSC

Climate Science: Global Circulation
Models of the Earth

https://phys.org/news/2014-11-latest-supercomputers-enable-high-resolution-climate.html
https://sciencesprings.wordpress.com/2018/04/27/from-brookhaven-lab-new-high-resolution-exascale-earth-modeling-

system-for-energy/

• Brookhaven E3SM sim.

Molecular Dynamics: Evaporation of a
Nanoscale Liquid Drop

http://www.gauss-centre.eu/gauss-centre/EN/Projects/MaterialsScienceChemistry/2016/
horsch_fluids_at_interfaces.html?nn=1236240

Gauss Center for Supercomputing, Germany

QCD simulations (1fm)

High Energy Physics: QCD Simulations of
Empty Space

http://www.physics.adelaide.edu.au/theory/staff/leinweber/

Why Simulations?

• Sometimes it is not possible to perform experiments
(astrophysics, geophysics)

• Sometimes the theory is too complex to obtain analytic
solutions (nonlinear problems with many degrees of
freedom)

• Simulations can be cost effective (running 10 simulations
might be cheaper than building 10 experiments)

How Trustworthy are Simulations?

A JPL study estimated that the number of computer “bugs” in a
program decreases exponentially with time spent debugging.

This means you can never be sure your code is completely free of
bugs !.

Always test your code!! Verification is Essential!!

• Run code for problems with known solutions.

• Test subcomponents of the code on a wide range of simple

problems to make sure they behave appropriately.

• Monitor conserved quantities to make sure they stay

conserved.

• Try to think up as many “reality checks” as you possibly can.

Computational Tools

Symbolic Calculations:

• Maple

• Mathematica

General Purpose Interpretive languages:

• Matlab - engineering, science, economics (nice integrated

interface, but expensive)

• Python - open source, object-oriented (growing in popularity)

Low-Level compiled languages:

• C - custom applications (fluid flow, plasmas, EM,…)

• Fortran - mostly

