
Lecture 14:  Array Tricks

Ways to create an array:

A = 5:9;
5 6 7 8 9

A = linspace(0,1,5);
0 0.25 0.5 0.75 1

A = zeros(1,5);
0 0 0 0 0

A = ones(1,5);
1 1 1 1 1

A = rand(1,5);
0.098 0.270 0.547 0.958 0.965

Use the colon notation

5 evenly-spaced numbers 
between 0 and 1 inclusive

A = [2 5 -3 6 1];
2 5 -3 6 1

Create the array “by hand” Create and fill with zeros

Create and fill with ones

Fill with random numbers



Ways to reference array elements:
Given:  A = 5:9; 5 6 7 8 9

A(1)

A(end:-1:1)
9 8 7 6 5

A(1:2:end);
5 7 9

A(2:4)

A(end);
9

6 7 8

5

A(3);
7

A(end-1);
8

A([1 2])
5 6

Ways to create subsets of an array:
Given:  A = 5 5 -2 8 -4 0

A(A > 0)
5 5 8

Returns all array elements greater than zero

Returns all array elements equal to 5
A(A == 5)

5 5

A(A<5 & A>-3)
-2 0

Returns all array elements less than 5 and greater than -3



Using one array to create a subset from another

Suppose you have two arrays that store the position and 
velocity of an object:

0 5 8 7 4 2

x1 = x(v>=0)
0 5 8

x = 

4 2 0 -1 -2 -2v = 

The following commands create a subset of this data that only 
includes the data points where v ≥ 0.

v1 = v(v>=0)
4 2 0

The Find() Command

The find() command returns the indices of an array that satisfy 
some condition. For example, the previous example could be 
done with the find command:

x1 = x(indx)
0 5 8

The array indices of the data points of interest are now stored in 
the array indx. This array can be used to create the subset of x 
and v values:

v1 = v(indx)
4 2 0

indx = find(v>=0)
1 2 3



Example:  Rejecting “bad” data points
Consider the following data set:

0 1 2 3 4 5 6
t

-2

0

2

4

6

8

10

x

The position measurements generally appear to vary sinusoidally 
with time. There’s some noise in the data, but it seems to be less 
than the periodic variation. One data point, however, seems to 
be “off.” Let’s suppose you have some good reason to reject it 
(like your lab partner admits that he bumped the apparatus 
during that measurement). We want to reject this point. 

Example:  Rejecting “bad” data points
Here’s a simple way of creating a subset of your data that 
excludes the “bad” data point. We observe that the “good” 
data have x < 4. 

x = array containing positions

t = array containing times

Create an array named good that stores the array indices of 
all the “good” data:

good = find(x < 4);

Now, create new arrays containing only the good data:

x_good = x(good);
t_good = t(good);



Example:  Rejecting “bad” data points
Plotting these new arrays shows that we have, in fact, 
removed the bad data point: 

0 1 2 3 4 5 6
t

-2

0

2

4

6

8

10
x

Example:  Multiple Event Handling 
Consider the following example that uses event handling when 
solving an ODE. The example defines two types of events:  


0 1 2 3 4 5 6
t

-1.5

-1

-0.5

0

0.5

1

1.5

x

0 1 2 3 4 5 6
t

-1.5

-1

-0.5

0

0.5

1

1.5

v

Event Type 1:  

Local maxima defined 
when the velocity v 
crosses zero from positive 
to negative

    

Event Type 2:  

Local minima defined 
when the velocity v 
crosses zero from negative 
to positive

Type 1

Type 2

v v



Event function example_events.m

function [trigger,is_terminal,direction] = example_events(t,w)
 
x = w(1);             % w(1) stores x
v = w(2);             % w(2) stores v
        
trigger = [v v];      % Event 1 is triggered when v = 0
                      % Event 2 is triggered when v = 0
                        
is_terminal = [0 0];  % Event 1 doesn't stop the integration
                      % Event 2 doesn't stop the integration
 
direction = [-1 1];   % Event 1 detects local max 
                      % Event 2 detects local min

Here’s the event function to locate local min and local max:

Main Code Snippet:

[t,w,te,we,ie] = ode45(@ode04_derivs, [tBegin tEnd], ...
     [x0 v0], options);   
 
xe = we(:,1);             % position for each event
ve = we(:,2);             % velocity for each event
 
% find event indices of type 1 and type 2 events
indx1 = find(ie == 1);    % local max
indx2 = find(ie == 2);    % local min

te1 = te(indx1);          % times of local max
te2 = te(indx2);          % times of local min

xe1 = xe(indx1);          % positions of local max
xe2 = xe(indx2);          % positions of local min

Here’s how we can extract type1 and type2 events from the matrices 
returned by ode45():

How could you calculate the period of the oscillation using the event arrays 
te1 or te2?



0 5 10 15
t

-1.5

-1

-0.5

0

0.5

1

1.5

x

Here’s how you can picture these arrays:

ie = 1 2 1 2 1

te = 1.57 4.71 7.85 11.0 14.1

indx1 = 1 3 5

indx2 = 2 4

te1 = te(indx1) = 1.57 7.85 14.1

te2 = te(indx2) = 4.71 11.0

Type 1

Type 2


