
Lecture 13: Using Events to Measure
and Control ODE Simulations

A. Single Solution
B. Family of Solutions with a Varying Parameter
C. Using Events to End the Simulation
D. Combining Events with a Family of Solutions
E. Use of Multiple Events During the Simulation

Example: Falling Motion with Air Drag

Free Fall Motion of a Ball with Turbulent
Air Drag

Fg = − mg

v

FD = − CDv |v |
Equation of Motion:

d2x
dt2 = − g − CD

m
v |v |

A. Single Numerical Solution

Review of Steps:
1. Define an m-file function ode04_derivs.m that returns two

derivatives: dx/dt and dv/dt

In a separate Matlab program ode04.m, do the following:
2. Initialize all parameters, initial conditions, etc.
3. Call the Matlab function ode45() to solve the ODE.
4. Separate out x(t) and v(t) solutions
5. Plot the results

% Initialize Parameters
tBegin = 0; % time begin
tEnd = 2; % time end
x0 = 0; % initial position (m)
v0 = 10; % initial velocity (m/s)

% global variables
global m; m = 1; % air drag
global C_d; C_d = 1; % mass

% Integrate ODE
[t,w] = ode45(@ode04_derivs, ...
 [tBegin tEnd], [x0 v0]);
y = w(:,1); % extract x(t)
v = w(:,2); % extract v(t)

% top plot - x(t)
subplot(2,1,1)
plot(t,y);
ylabel(‘height (m)');
xlabel('time (s)');

% bottom plot - v(t)
subplot(2,1,2)
plot(t,v);
ylabel('velocity (m/s)');
xlabel('time (s)');

 function derivs = ode04_derivs(t, w)

 global C_d; % air drag
 global m; % particle mass

 g = 9.8; % g

 y = w(1); % w(1) stores x
 v = w(2); % w(2) stores v

 % calculate dx/dt and dv/dt
 dydt = v;
 dvdt = -g - v * abs(v) * C_d / m ;

 derivs = [dydt; dvdt];

ode04A.m ode04_derivs.m

Here’s the
result for
ode04A:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-3

-2

-1

0

1

2

he
ig

ht
 (m

)

Falling Motion with Air Drag

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-2

0

2

4

6

8

10

ve
lo

ci
ty

 (m
/s

)

terminal velocity

Try the following:

1. Change the value of the drag coefficient, mass, and initial
velocity to see how each affects the terminal velocity and
maximum height.

2. Change the plot style from a solid line ‘-‘ to a line with
circular markers ‘-o’. Where are the time steps largest?
Where are they smallest?

B. Family of Solutions with a Varying Parameter
(Example: Vary the Drag Coef.)

Often, it is helpful to plot a series of solutions as some parameter
is varied. The “family” of solutions can provide insight into how the
system behaves. In this example, we vary the drag coefficient to
see how increasing air resistance affects the dynamics:

1. Define the values in an array
2. Create a loop to solve the ODE and plot the result for

each value
3. After the loop, label the axes, create a legend, set plot

limits, etc.

CD = 0, 0.1, 0.5, 2

CD

CD

Code Snippets:

1. Define the values in an array

2. Create a loop to solve the ODE and plot the result for
each value

CD

CD

C_d_list = [0 0.1 0.5 2];

for k = 1:length(C_d_list) % loop through all elements
 % in C_d_list
 C_d = C_d_list(k);

 [t,w] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0]);
 y = w(:,1);
 plot(t,y, ‘-‘);
 hold on % prevent next plot from overwriting
 % current plot
 end

C_d_list = [0 0.1 0.5 2]; % drag coefs for four different runs

%%%%%%%%%% Loop through each model run %%%%%%%%%
for k = 1:length(C_d_list)

 C_d = C_d_list(k); % assign the global variable C_d to the kth value in the C_d_array

 % Use the Runge-Kutta 45 solver to solve the ODE
 [t,w] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0]);
 y = w(:,1); % extract positions from first column of w matrix
 v = w(:,2); % extract velocities from second column of w matrix

 % top subplot graphs x vs t
 subplot(2,1,1)
 plot(t,y, ‘-‘);
 hold on

 % lower subplot graphs v vs t
 subplot(2,1,2)
 plot(t,v, ‘-‘);
 hold on
end

% title, labels, legend for top subplot
subplot(2,1,1)
str = sprintf('Falling Motion with Air Drag (v_0 = %.0f m/s)',v0);
title(str);
ylabel('height (m)');
xlabel('time (s)');
legend('C_d = 0', 'C_d = 0.1', 'C_d = 0.5', 'C_d = 2.0')

% title, labels, legend for lower subplot
subplot(2,1,2)
ylabel('velocity (m/s)');
xlabel('time (s)');
legend('C_d = 0', 'C_d = 0.1', 'C_d = 0.5', 'C_d = 2.0')

Excerpts of code ode04B.m (initialization not shown)

Here’s the
result for
ode04B:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-2

0

2

4

6

he
ig

ht
 (m

)

Falling Motion with Air Drag (v0 = 10 m/s)

Cd = 0
Cd = 0.1
Cd = 0.5
Cd = 2.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-10

-5

0

5

10

ve
lo

ci
ty

 (m
/s

)

Cd = 0
Cd = 0.1
Cd = 0.5
Cd = 2.0

Try the following:

1. Add an additional curve to both the position and velocity
plots, with . Include the new curve in the legend.

2. Draw the curves as dashed lines to distinguish
them from the others.

Cd = 1.0

Cd = 1.0

C. Using Events to End the Simulation (Example:
Stop the simulation when the ball hits the ground)

Aim: Modify program ode04A.m so that the numerical
integration stops when the ball returns back to ground level at
y = 0.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-3

-2

-1

0

1

2

he
ig

ht
 (m

)

Falling Motion with Air Drag

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-2

0

2

4

6

8

10

ve
lo

ci
ty

 (m
/s

)

y

t

y = 0

Stop the
simulation here

We can distinguish these two events by noticing that the first
event occurs as y is increasing in value (v > 0) at launch, while
the second event occurs when y is decreasing in value (v < 0)
when the ball falls and hits the ground.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-3

-2

-1

0

1

2
he

ig
ht

 (m
)

Falling Motion with Air Drag

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-2

0

2

4

6

8

10

ve
lo

ci
ty

 (m
/s

)

y

t

y = 0 (v < 0)
y = 0 (v > 0)

We need a precise condition for stopping the simulation. The
problem is that there are two solutions for the condition y = 0:
the desired one and one at t = 0 when the ball is thrown upward.

Matlab Event Handler
The Matlab event handler works as follows. The user defines an
event with a specified function :

1. An event is triggered when the function passes through zero,
i.e. when . This is called a “zero crossing”

2. The user can optionally define events based on the direction of
the zero crossing, i.e. if it occurs from above or below.

3. The user can also specify whether the event should terminate
the integration, or whether it should just record the integration
variables (i.e. x, v, t, etc.) and continue integrating.

gevent(x, v, t)

gevent(x, v, t) = 0

Event function ode04C_events.m

Define the function ode04C_events.m:
- Use the same passed parameters (t, w)as ode04_derivs().
- Returned variables: trigger, is_terminal, direction

function [trigger,is_terminal,direction] = ode04C_events(t,w)

Extract position y and velocity v from the w matrix

y = w(1); % w(1) stores y
v = w(2); % w(2) stores v

Set trigger equal to the function that triggers the event. Events are detected
when value of trigger passes through zero. In this example, an event will
trigger when y = 0.

trigger = y; % Event is triggered when y = 0

Event function ode04C_events.m
The variable is_terminal is a flag that tells Matlab if the simulation should
stop once the event is detected:
- if is_terminal == 1, the simulation will stop when an event is detected
- if is_terminal == 0, the simulation will keep going.
In this example, we want to stop the integration when the event it detected:

is_terminal = 1; % Stop the integration

The variable direction is a flag that tells Matlab if event detection depends on
the direction of the zero crossing.
- if direction == 1, trigger function must increase from negative to positive
- if direction == -1, trigger function must decrease from positive to negative
- if direction == 0, sign of zero crossing doesn’t matter
In this example, we want to trigger when the ball drops (downward) below zero:

direction = -1; % trigger on downward zero crossing

Event function ode04C_events.m

function [trigger,is_terminal,direction] = ode04C_events(t,w)

y = w(1); % w(1) stores y
v = w(2); % w(2) stores v

trigger = y; % Event is triggered when y = 0
is_terminal = 1; % Stop the integration
direction = -1; % Negative direction only (crosses y = 0
 % from above)

Bring it all together now. Here’s the full event function:

Back in the main program ode04C.m

[t,w] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0]);

To implement the event handling, we need to replace this line of code in
ode04A.m:

options = odeset('Events',@ode04C_events);

% Use the Runge-Kutta 45 solver to solve the ODE
[t,w] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0], options);

with the following lines of code in ode04C.m:

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

0

0.5

1

1.5

2

he
ig

ht
 (m

)

Falling Motion with Air Drag

0 0.2 0.4 0.6 0.8 1 1.2
time (s)

-4

-2

0

2

4

6

8

10

ve
lo

ci
ty

 (m
/s

)

Here’s the
result for
ode04C: Simulation ends

when y returns to 0

One last modification for ode04C.m

We often use events to measure some aspect of the ODE solution. For
example, we can time how long the ball stays aloft. To do this we make one
last modification. We “capture” the event data returned by ode45:

[t,w] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0], options);

Modify this line of code:

to look like this:
[t,w,te,we,ie] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0], options);

where:
- te is the time of the event
- we is the w matrix of the event. In this example we is a 1x2 matrix

containing the position and velocity of the ball
- ie is the event index, which only matters when multiple event triggers are

used

One last modification for ode04C.m

We can now display information on the ball’s motion as follows:

ye = we(1); % height of the ball when it lands (should be 0!!)
ve = we(2); % velocity of the ball when it lands

fprintf('The ball is aloft for %f s\n’,te);
fprintf('The ball lands with a velocity = %f m/s\n’,ve);

D. Combining Events with a Family of Solutions

This example doesn’t introduce anything new. It just combines
programs ode04B.m with ode04C.m.

Events are used to terminate the program when the ball
returns to y = 0. Information about the dynamics are printed to
the command window for each value of the drag coefficient.

Drag coef = 0.00 time aloft = 2.04 s impact velocity = -10.0 m/s
Drag coef = 0.10 time aloft = 1.70 s impact velocity = -7.0 m/s
Drag coef = 0.50 time aloft = 1.22 s impact velocity = -4.0 m/s
Drag coef = 2.00 time aloft = 0.81 s impact velocity = -2.2 m/s

Output:

Here’s the
result for
ode04D:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

0

1

2

3

4

5

6

he
ig

ht
 (m

)

Falling Motion with Air Drag

Cd = 0
Cd = 0.1
Cd = 0.3
Cd = 1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-15

-10

-5

0

5

10

ve
lo

ci
ty

 (m
/s

)

Cd = 0
Cd = 0.1
Cd = 0.3
Cd = 1.0

E. Using Multiple Events

In this example, we have two types of events:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-3

-2

-1

0

1

2

he
ig

ht
 (m

)

Falling Motion with Air Drag

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-4

-2

0

2

4

6

8

10

ve
lo

ci
ty

 (m
/s

)

y

t

Event type 1: Stop the
simulation when y = 0

Event type 2: Max height
when v = 0

Event function ode04E_events.m

function [trigger,is_terminal,direction] = ode04E_events(t,w)

y = w(1); % w(1) stores y
v = w(2); % w(2) stores v

trigger = [y v]; % Event 1 is triggered when y = 0
 % Event 2 is triggered when v = 0

is_terminal = [1 0]; % Event 1 stops the integration
 % Event 2 doesn't stop the integration

direction = [-1 0]; % Event 1 requires zero crossing to go from
 % positive to negative
 % Event 2 doesn't depend on direction

To define a second type of event, we write a new event function
called ode04E_events.m:

Notice each returned variable is now a 1x2 matrix. The first
element defines Event type 1 and the second element defines
Event type 2.

Back in the main program ode04E.m

[t,w,te,we,ie] = ode45(@ode04_derivs, [tBegin tEnd], [y0 v0], options);

Event handling with two events looks similar to that for one event. The
ode45() call is unchanged from the call in ode04C.m:

te = 0.359
 0.858

Now, however, the returned event variables will have multiple rows, one for
each event detected during the integration. In this example, only one type 1
event and one type 2 event will be found, giving us two rows for each
variable te, we and ie:

we = 0.7662 0.000
 0.0000 -2.1617

ie = 2
 1

first event
second event

event
time

event
position

event
velocity

event
type

Back in the main program ode04E.m

ye = we(:,1); % height of the ball for each event
ve = we(:,2); % velocity of the ball for each event

We can separate out the position and velocity info from the we matrix just
like we do for the w matrix:

To search for events of a particular type, we can do the following:

event_type1 = find(ie == 1); % indices of all type 1 events
event_type2 = find(ie == 2); % indices of all type 2 events

For example, we can now get all the velocities of type 1 events like this:

v1 = ve(event_type1); % velocities of all type 1 events

Or we could plot a circle at the max height of the y vs. t graph:

plot(te(event_type2),ye(event_type2),’ko’)

Here’s the
result for
ode04E:

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

0

1

2

3

4

5

6

he
ig

ht
 (m

)

Falling Motion with Air Drag

Cd = 0
Cd = 0.1
Cd = 0.3
Cd = 1.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
time (s)

-15

-10

-5

0

5

10

ve
lo

ci
ty

 (m
/s

)

Cd = 0
Cd = 0.1
Cd = 0.3
Cd = 1.0

The open circles mark
the position and
velocity where the ball
reaches its maximum
height

