Lecture 11: Ordinary Differential
Equations (ODE:s)

Initial Value Problem (IVP): Need to specify constraints at
only one point (initial value) to produce unique solutions

Example: harmonic oscillator

Boundary Value Problem (BVP): Need to specify constraints
at >1 points (on boundary) to produce unique solutions

Example: heat equation

Examples of Initial Value ODEs
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Solutions
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d’x no analytic solution -

use Matlab

Many nt order ODEs can be written in terms
of n 13t order equations

Consider ODEs produced from F = ma:
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nt" order ODEs require n initial conditions
(one for each 15t order equation)

2nd order ODESs such as F' = ma require two initial conditions

x(0) = initial position %:V
v(0) = initial velocity & _F@yvi)
dt m
Notation

Break up time into discrete intervals At

Label the times as f, = nAt
Label the numerical solution as x, = x(z,)

numerical
approximation

actual solution




Euler’s Method

We want to solve a first-order equation of the form ? = f(x,1)
t

Euler’s method approximates the derivative as

de _Ax_x(ty+A)-x(t) o

dt At At dt At

dx x X

n+l —_ n

Solve for Xp+1

X, =x,+ f(x,.t,)At

Euler’s Method

. d
Write a program to solve d—x =2x for 0<x<3
t

Pseudocode:

Initialization
Define: final time & time step At
Calculate number of points N
Preallocate arrays to store t and x values
set x(1) = initial value of x & t(1) =0

Iteration
Create for loop to calculate t, and X, values

Present your results
Plot x vs. t




Euler’s Method

Pros:
- easy to understand
- easy to implement

Cons:
- numerically unstable for lots of situations
- requires small time steps which introduces
numerical round-off errors
- only 15t order accurate




Approximation Accuracy

Compare the numerical integration scheme to a Taylor
series expansion:
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If the numerical integration method is equivalent to keeping
n+1 terms in the Taylor series, then the integration scheme
is said to be of nt order.

Approximation Accuracy

Rule of Thumb:

numerical xactual

X

actual

<10™

If the local relative tolerance per time step is

then it is best to choose at least an n'" order algorithm




