Lecture 11: Ordinary Differential Equations (ODEs)

Initial Value Problem (IVP): Need to specify constraints at only one point (initial value) to produce unique solutions

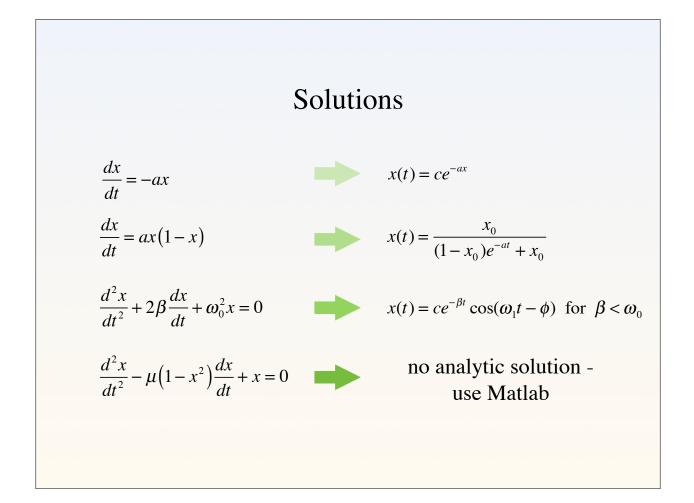
Example: harmonic oscillator

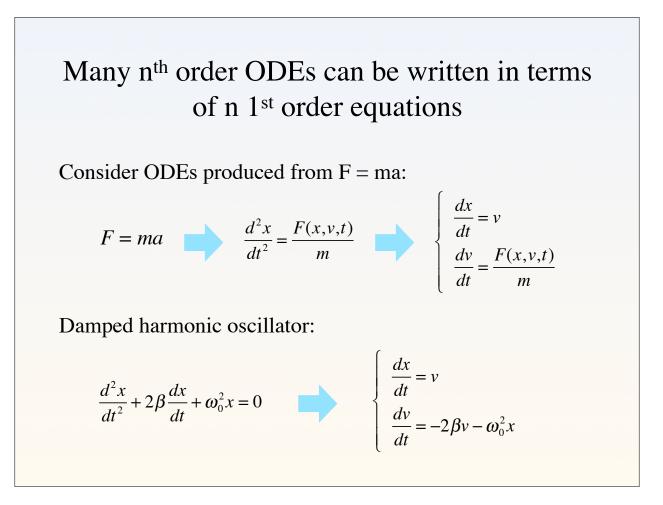
Boundary Value Problem (BVP): Need to specify constraints at >1 points (on boundary) to produce unique solutions

Example: heat equation

Examples of Initial Value ODEs

$\frac{dx}{dt} = -ax$	1 st order, linear
$\frac{dx}{dt} = ax(1-x)$	1 st order, nonlinear
$\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + ax = 0$	2 nd order, linear
$\frac{d^2x}{dt^2} - \mu \left(1 - x^2\right) \frac{dx}{dt} + x = 0$	2 nd order, nonlinear

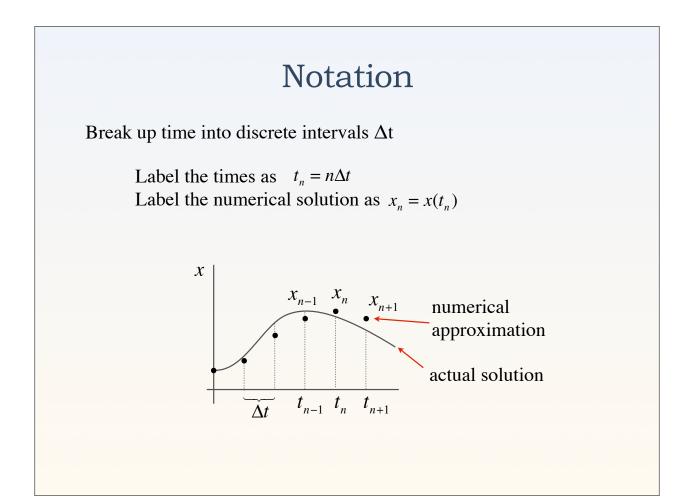


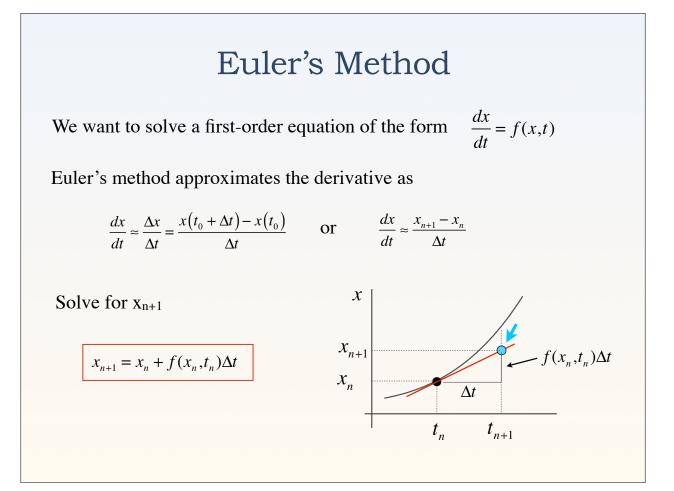


nth order ODEs require n initial conditions (one for each 1st order equation)

2nd order ODEs such as F = ma require two initial conditions

 $x(0) = \text{initial position} \qquad \frac{dx}{dt} = v$ $v(0) = \text{initial velocity} \qquad \frac{dv}{dt} = \frac{F(x, v, t)}{m}$





Euler's Method

Write a program to solve $\frac{dx}{dt} = 2x$ for $0 \le x \le 3$

Pseudocode:

Initialization

Define: final time & time step Δt Calculate number of points N Preallocate arrays to store t and x values set x(1) = initial value of x & t(1) = 0

Iteration

Create for loop to calculate t_n and x_n values

Present your results Plot x vs. t

Euler's Method

Pros:

- easy to understand
- easy to implement

Cons:

- numerically unstable for lots of situations
- requires small time steps which introduces numerical round-off errors
- only 1st order accurate

Approximation Accuracy

Compare the numerical integration scheme to a Taylor series expansion:

$$x(t_n + \Delta t) = x(t_n) + \frac{dx}{dt}\Big|_{t_n} \Delta t + \frac{1}{2!} \frac{d^2x}{dt^2}\Big|_{t_n} (\Delta t)^2 + \cdots$$

Euler $x(t_n + \Delta t) = x(t_n) + f(t_n)\Delta t + \frac{1}{2!} \frac{df(t)}{dt}\Big|_{t_n} (\Delta t)^2 + \cdots$

If the numerical integration method is equivalent to keeping n+1 terms in the Taylor series, then the integration scheme is said to be of n^{th} order.

Approximation Accuracy

Rule of Thumb:

If the local relative tolerance per time step is $\left|\frac{x_{numerical} - x_{actual}}{x_{actual}}\right| < 10^{-n}$ then it is best to choose at least an nth order algorithm