
Program Grading Rubric

This document lays out common criteria used to grade PHYS 409 Computational Methods
programming assignments. Each criterion has a number of different levels of achievement, with a
description of how a submission will attain that level and the number of points assigned for
reaching it. Please email or ask me if you have any questions about this rubric.

Criteria

Program Specifications / Correctness

This is the most important criterion. A program must meet its specifications (whether from a
textbook problem or as written in the assignment) and function correctly. This means that it
behaves as desired, producing the correct output, for a variety of inputs. This criterion includes
the need to meet specifications by writing a program in a particular way or using a particular
language feature or numerical approach, if such a thing is mentioned in the problem.

If a specification is ambiguous or unclear, you have two choices: You can either make a
reasonable assumption about what is required, based on what makes the most sense to you, or
you can ask the instructor. If you make an assumption about an ambiguous specification, you
should mention that somewhere in a comment so that the reader/grader knows what you were
thinking. Points may be taken off for poor assumptions, however.

Presentation of Results

Care should be taken when you present your results. Numerical answers should be appropriately
formatted and organized in tables if lots of data are involved. Graphs should be constructed in
such a way that they communicate what is intended efficiently and elegantly. Communicating
information through visual representations can be something of an art form. Decisions that affect
how effectively a graph communicates the desired idea include whether to use a linear or log
scale, whether to plot multiple results on a single graph or on multiple graphs, whether to include
reference lines or curves, whether to include a legend or label curves directly, etc.

Readability

Code needs to be readable to both you and a knowledgeable third party. This involves:

• Using indentation consistently (e.g., every loop, if statement, etc. is indented to the same
level)

• Adding whitespace (blank lines, spaces) where appropriate to help separate distinct parts of
the code, but not too much white space

i = i + 1; % not i=i+1;

x = 2*x - 1; % not x=2*x+1;

A(i+2) = 3; % not A(i + 2) = 3;

�1

• Don’t include unnecessary parentheses. Know the order of operations.
z = 2*a*x / y.^2 + 3; % not z = (2*(a*x))/(y.^2) + 3;

• Give variables meaningful names. Don’t define A as the mass of an electron, use me or
mElect or something similar. Use comments to define variables the first time they are
used. Also, don’t go crazy with variable names. For example,
massOfElectronInKg is certainly specific, but can actually make complex equations
more rather than less difficult to read.
g = 9.8; % GOOD for acceleration of gravity

x = 2; % GOOD for position x

m1 = 100; % GOOD for mass of particle 1

mElectron = 1.609e-19; % OK for mass of electron, but too

 % verbose if you use it a lot

me = 1.609e-19; % BETTER if you will use it a lot

The code should be well organized. Functions should be defined in one section of the program,
code should be organized into functions so that blocks of code that need to be reused are
contained within functions to enable that, and functions should have meaningful names. This is a
concept that we will be learning about as we write more and more code in CS 127, and so few
points, if any, will be taken off for organization issues that we have not yet addressed in class.

Documentation

Every code should start with a header comment. At the very least, this header should contain:

• name of the program
• a short description of what your program does including any input that the program

requires and any output that it may produce
• your name
• the names of any lab partners with whom you might have collaborated
• date you turn the program in
• name of the class
• assignment and problem number
• detailed description of the approach and numerical methods used in the code if it is

complex including references to resources you may have used to write it

All code should also be well-commented. This requires striking a balance between commenting
everything, which adds a great deal of unneeded noise to the code, and commenting nothing, in
which case the reader of the code (or you, when you come back to it later) has no assistance in
understanding the more complex or less obvious sections of code. In general, aim to put a

�2

comment on any line of code that you might not understand yourself if you came back to it in a
month without having thought about it in the interim. Like code organization, appropriate
commenting is also something we will be learning about as we write code throughout the
semester. Here are some guidelines adapted from a Phython course (CS11) at CalTech:

• Write general comments in full, grammatically correct sentences.
% This code calculates the fast Fourier transform of a

% two-dimensional image. It uses the method outlined in..

• Always leave a space after the comment sign:
% This is easier to read

%This is harder to read

• Don’t state the obvious
x = x + 1; % increment x (BAD - redundant)

i = 1; % i (BAD - Meaningless)

• As you change the code, make sure you update your comments.

• Try to line up your comments with each other as best you can, but don’t go overboard
x0 = 100; % initial value of x

y0 = 20; % initial value of y (BAD)

This is better:
x0 = 100; % initial value of x

y0 = 20; % initial value of y (GOOD)

• Longer codes can benefit from labeling sections with comments that stand out like this.
Also use blank lines between sections of the code that have different functions.
blah
blah

%%%%%%%%%%%%%%%% Curve-Fitting %%%%%%%%%%%%%%%%%%%

more
blah
blah

�3

Reusability

In general, scientific code written to solve specific problems will not be as general or as flexible
as larger applications written by a software engineering firm. Even still, physics codes can
benefit from a few simple rules:

• Define all parameters or constants as variables. Don’t substitute numbers directly into
code.

 This is BAD:

period = 2 * pi * sqrt(1.5/0.8); % period of pendulum

This is BETTER:

g = 9.8; % acceleration of gravity (in m/s^2)

L = 1.5; % length of pendulum (in m)

period = 2 * pi * sqrt(L/g); % period of pendulum

• Once we have covered functions, it is best to define functions that are used to calculate
often-used quantities, i.e. Fourier transforms, Hankel transforms, etc. Defining a function
that you can pass parameters and data to is the best way of maximizing the reusability of
your code.

Code Efficiency

There are often many ways to write a program that meets a particular specification, and several
of them are often poor choices. They may be poor choices because they take many more lines of
code (and thus your effort and time) than needed, or they may take much more of the computer's
time to execute than needed. For example, a certain section of code can be executed ten times by
copying and pasting it ten times in a row or by putting it in a simple for loop. The latter is far
superior and greatly preferred, not only because it makes it faster to both write the code and read
it later, but because it makes it easier for you to change and maintain. We will discuss tricks
throughout the course to help you write efficient, elegant code.

�4

Program Grading Rubric

*In the event that the code does not meet the specifications at all, no credit will be received for the other
categories.

Criteria Exceptional
(3)

Good
(2)

Acceptable
(1)

Unacceptable
(0)

Specifications*

(counts 2x)

The code works and
meets all of the
specifications
including using the
proper numerical
methods.

Minor details of the
program specification
are violated, but
generally produces
correct results.

The code contains
some minor bugs that
prevent it from
performing optimally
in all cases.

The code does not
function optimally or
gives incorrect results
and does not meet the
specifications.

Presentation of
Results

The code presents any
graphical or numeric
results in a
professional and
elegant manner.

The results are clearly
presented yet not
completely “polished”

The results are
readable but could
benefit from better
organization.

The results are hard to
read or disorganized.

Readability The code is
exceptionally well
organized and very
easy to follow.

The code is fairly
easy to read.

The code is readable
only by someone who
knows what it is
supposed to be doing.

The code is poorly
organized and
difficult to read.

Documentation The documentation is
well written and
clearly explains what
the code is
accomplishing and
how.

The documentation
consists of embedded
comment and some
simple header
documentation that is
somewhat useful in
understanding the
code.

The documentation is
simply comments
embedded in the code
with some simple
header comments
separating routines.

The documentation is
simply comments
embedded in the code
and does not help the
reader understand the
code.

Reusability The code is easily
adaptable to other
related problems.

The code could be
adapted to other
related problems with
some effort.

The code contains
portions that make
specific assumptions
about the problem and
are not easily
generalized.

The code is not
general and very
difficult to reuse in
other situations.

Efficiency The code is extremely
efficient without
sacrificing readability
or understanding.

The code is fairly
efficient without
sacrificing readability
or understanding.

The code is slow, uses
brute force methods
and/or unnecessarily
long.

Many things could
have been
accomplished in an
easier, faster or
otherwise better
fashion.

�5

