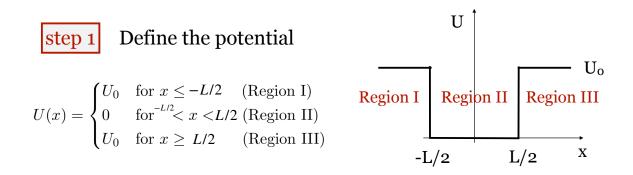
The Schrödinger Equation (Part 2) Finite Potential Well and Step Barriers

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar\frac{\partial\Psi}{\partial t}$$

Kinetic
Energy + Potential
Energy = Total
Energy

Method for Solving Time-Independent Schrödinger Equation (SE)

- Step 1. Define potential U(x), draw a picture and plug into SE
- Step 2. Solve SE or guess general solutions to the SE.
- Step 3. Write down boundary conditions.
- Step 4. Use boundary conditions to place constraints on unknown constants and coefficients.
- Step 5. Use boundary constraints to solve for energy levels E_n
- Step 6. Use normalization to solve for remaining unknown constants and write down final wave functions $\psi_n(x)$ associated with each energy level E_n



Solve general case of constant potential Uo

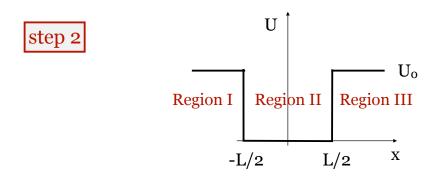
$$\frac{\partial^2 \psi(x)}{\partial x^2} = -\frac{2m}{\hbar^2} (E - U_0) \psi(x)$$

General Constant Potential: $U(x) = U_0$

$$\frac{\partial^2 \psi(x)}{\partial x^2} = -\frac{2m}{\hbar^2} (E - U_0) \psi(x)$$

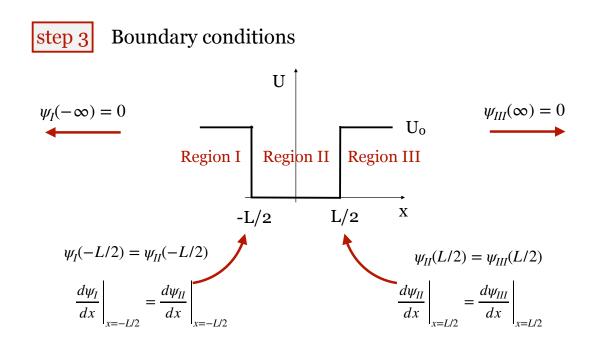
Case I:
$$E > U_0$$
 $\psi(x) = A \sin(kx) + B \cos(kx)$ or
 $\psi(x) = Ce^{ikx} + De^{-ikx}$
where: $k = \frac{\sqrt{2m(E - U_0)}}{\hbar}$ Classically Allowed

Case II:
$$E < U_0$$
 $\psi(x) = A'e^{k'x} + B'e^{-k'x}$
where: $k' = \frac{\sqrt{2m(U_0 - E)}}{\hbar}$ Classically
Forbidden



Region I
$$\psi_I(x) = Ce^{k'x} + De^{-k'x}$$
 $k = \frac{\sqrt{2mE}}{\hbar}$ Region II $\psi_{II}(x) = A\sin(kx) + B\cos(kx)$ $k' = \frac{\sqrt{2m(U_0 - E)}}{\hbar}$ Region III $\psi_{III}(x) = Ee^{k'x} + Fe^{-k'x}$ $k' = \frac{\sqrt{2m(U_0 - E)}}{\hbar}$

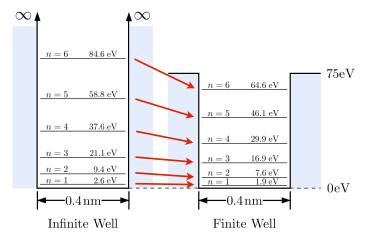
Finite Potential Well



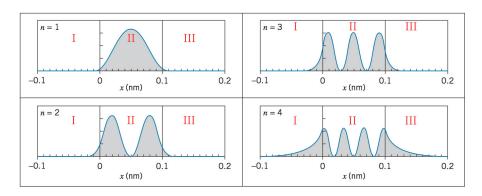
Use B.C. to constrain unknown constants

Finite Potential Well

Need to use numerical techniques to solve for energies. Here is the result for a specific well size.



step 6 Again, we just present the graphs.



Note that the wave function is oscillatory in the classically allowed region and exponentially decays in the classically forbidden regions. Also note that the wavelengths "spread out" slightly compared with the infinite potential well.

General Behavior of Wave Functions in a Potential Well

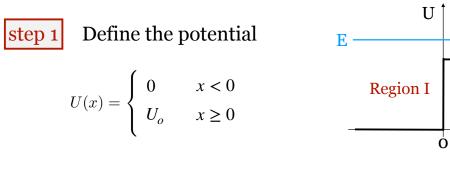
- 1) $\psi(x)$ is oscillatory in classically allowed regions where E > U
- 2) $\psi(x)$ decays in classically forbidden regions where E < U
- 3) Wavelength decreases as K.E. increases
- 4) Amplitude increases as probability of finding particle increases

Step Barrier: E > U_o

— U_o

Х

Region II



$$\frac{d^2\psi(x)}{dx^2} = -\frac{2m}{\hbar^2} E\psi(x)$$
Region I
$$\frac{\partial^2\psi(x)}{\partial x^2} = -\frac{2m}{\hbar^2} (E - U_0)\psi(x)$$
Region II

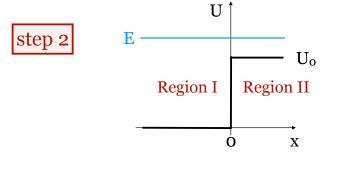
General Constant Potential: $U(x) = U_0$

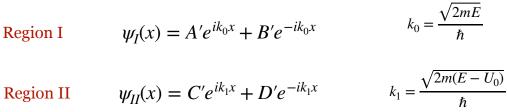
$$\frac{\partial^2 \psi(x)}{\partial x^2} = -\frac{2m}{\hbar^2} (E - U_0) \psi(x)$$

Case I:
$$E > U_0$$
 $\psi(x) = A \sin(kx) + B \cos(kx)$ or
 $\psi(x) = Ce^{ikx} + De^{-ikx}$
where: $k = \frac{\sqrt{2m(E - U_0)}}{\hbar}$ Classically Allowed

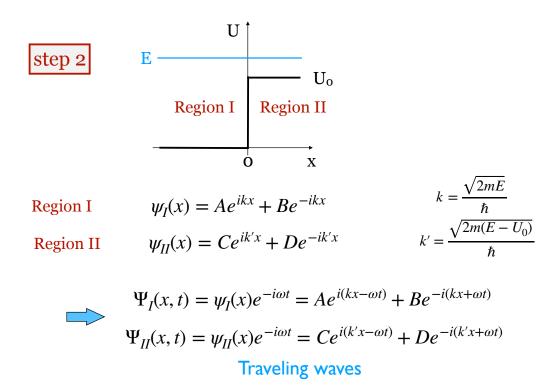
Case II:
$$E < U_0$$
 $\psi(x) = A'e^{k'x} + B'e^{-k'x}$
where: $k' = \frac{\sqrt{2m(U_0 - E)}}{\hbar}$ Classically
Forbidden

General Constant Potential: $U(x) = U_0$

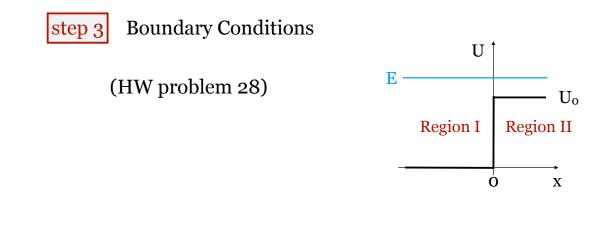




General Constant Potential: $U(x) = U_0$



General Constant Potential: $U(x) = U_0$



General Constant Potential: $U(x) = U_0$

step 5

Energies are NOT quantized (why?)

Wave functions are NOT normalized (why?)

Instead, solve for $\frac{|B'|^2}{|A'|^2}$ and $\frac{|C'|^2}{|A'|^2}$