
The Schrödinger Equation (Part 1)
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Postulate:  Particles are described by a complex-valued wave 
function               . Properties of the wave determine the 
physical properties of the particle. 

Wavelength of the wave function determines the particle’s 
momentum:

p = h
λ

Ψ(x, t)

p = ℏk

Frequency of the wave function determines the particle’s 
energy:

E = h f E = ℏω



Q:  How do you “do physics” with a wave 
function?

A:  You need a wave equation that tells the   
wave how to behave.

Math Interlude:  Partial Derivative
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A partial derivative considers changes in one variable at a 
time.  All variables not in the derivative are treated as 
constants.

Example: ∂
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Example

∂2ψ
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Determine if traveling waves of the form                    
are solutions to the following wave equation:

ψ(x, t) = Aei(kx−ωt)

Schrödinger’s equation
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∂x2 + U(x)Ψ(x, t) = iℏ ∂Ψ
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(Conservation of energy for wave functions)

m = particle mass

Ψ(x, t) = wave function

U(x) = potential energy defining the system



Traveling Wave Solution to Schrödinger’s 
Equation with Constant Potential U0
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Show that the complex, traveling wave 
is a solution to the Schrödinger equation (with constant 
potential      ). 

ψ(x, t) = Aei(kx−ωt)

U0

U(x) = U0

ℏ2k2

2m
+ U0 = ℏω

This is just a statement of energy conservation!

p2

2m
+ U0 = E

After plugging in the traveling wave, you should find: 

Properties of Time-Dependent  
Wave Functions 

ψ(x, t) = wave function (complex-valued). Also called the 
“probability amplitude”

ψ(x, t)

ψ(x, t) = e−x2/42ei(2x−3t)



Properties of Time-dependent  
Wave Functions ψ(x, t)

|ψ(x, t) |2 = ψ*(x, t) ψ(x, t) = probability density (real-valued).

|ψ(x, t) |2 = e−2x2/42

Properties of Time-dependent  
Wave Functions ψ(x, t)

|ψ(x, t) |2 dx = probability of finding the particle on the 
interval (x, x + dx)

dx



Properties of Time-dependent  
Wave Functions ψ(x, t)

∫
b

a
|ψ(x, t) |2 dx = probability of finding the particle on the 

interval a < x < b

a b

Properties of Time-dependent  
Wave Functions ψ(x, t)

∫
∞

−∞
|ψ(x, t) |2 dx = 1 Normalization condition:  probability 

that the particle is found somewhere = 1



Expectation Value
The expectation value of the particle’s position given a 
wave function             is the average position that results 
from many measurements. 

ψ(x, t)

⟨x⟩ = ∫
∞

−∞
x |ψ(x, t) |2 dx

⟨x⟩

⟨ f(x)⟩ = ∫
∞

−∞
f(x) |ψ(x, t) |2 dx

In general, the expectation of a function of any function f(x) is:

Uncertainty

The measurement uncertainty in the position x of a particle 
is given by Δx = ⟨x2⟩ − ⟨x⟩2

⟨x⟩

Δx



Example

(b) Find the expectation value ⟨x⟩ = ∫
∞

−∞
x |ψ(x, t) |2 dx

ψ(x, t) = Axe−iωt for 0 < x < L

(a) Use the normalization condition 
to solve for the constant A in the 
following wave function

x0 L

ψ(x,0)

(c) What is the probability of finding the particle  on
0 < x < L/2 ?

Properties of Time-dependent  
Wave Functions ψ(x, t)

must be single-valued and continuousΨ(x, t)

must be smooth (i.e.               must be continuous )  if the 
potential energy curve U(x) has no spikes,

dΨ(x, t)
dxΨ(x, t)

Ψ(x, t) → 0 x → ± ∞when 

when Ψ(x, t) → 0 U → ∞



Time-Independent Schrödinger Equation

In many physics applications, we are interested in standing 
wave solutions to the Schrödinger equation. 

Ψ(x, t) = ψ(x)e−iωtWe look for solutions of the form:

Plug this expression for               into the full time-
dependent Schrödinger equation to derive the              
Time-Independent Schrodinger Equation:
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2m
d2ψ(x)

dx2 + U(x)ψ(x) = Eψ(x)

Ψ(x, t)

Method for Solving Time-Independent 
Schrödinger Equation (SE)

Step 1.   Define potential U(x), draw a picture and plug into SE

Step 2.   Solve SE or guess general solutions to the SE.

Step 4.   Use boundary conditions to place constraints on unknown 
constants and coefficients.

Step 5.   Use boundary constraints to solve for energy levels En

Step 6.   Use normalization to solve for remaining unknown  
                constants and write down final wave functions 
                associated with each energy level En

ψn(x)

Step 3.   Write down boundary conditions.



Infinite Potential Well:  Particle in a Box

step 1 Define the potential U

x0 L
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2m
d2ψ(x)

dx2 + U(x)ψ(x) = Eψ(x)

Inside the well, U(x) = 0

d2ψ(x)
dx2 = − 2m

ℏ2 Eψ(x)

Infinite Potential Well:  Particle in a Box

step 2 Solve Schrödinger equation d2ψ(x)
dx2 = − 2m

ℏ2 Eψ(x)

General Solution: ψ(x) = A sin(kx) + B cos(kx)

k = 2mE
ℏ

where:



Infinite Potential Well:  Particle in a Box

step 3 Write down boundary conditions

U

x0 L

ψ(0) = 0 ψ(L) = 0
ψ(x)

Infinite Potential Well:  Particle in a Box

step 4 Use B.C. to constrain unknown constants

ψ(0) = 0

ψ(L) = 0

General Solution: ψ(x) = A sin(kx) + B cos(kx) k = 2mE
ℏ

Boundary Conditions:

B = 0 ψ(x) = A sin(kx)

A sin(kL) = 0 kL = nπ



Infinite Potential Well:  Particle in a Box

step 5 Use B.C. to solve for quantized energies

ψ(L) = 0 where k = 2mE
ℏkL = nπ

En = h 2n2

8mL2

kL = nπψ(x) = A sin(kx)Tidy up solution: where

ψn(x) = A sin ( nπx
L )

Infinite Potential Well:  Particle in a Box

step 6 Use normalization to solve for constant A

∫
∞

−∞
|ψ(x) |2 dx = 1

∫
L

0
A2 sin2 ( nπx

L ) dx = 1

Integrate over domain from 0 to L and solve for A:

∫ sin2 axdx = x
2 − sin(2ax)

4aUse to find A = 2
L



Infinite Potential Well:  Particle in a Box

step 6 Combine final results

ψn(x) = 2
L

sin ( nπx
L ) En = h 2n2

8mL2

x = 0 x = L
ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

ψ5(x)
U(x)

x0 L
E1

E4

E2

E3

E5

Infinite Potential Well:  Particle in a Box

Wave Function

ψn(x) = 2
L

sin ( nπx
L )

x = 0 x = L
ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

ψ5(x)

Probability Density

|ψn(x) |2 = 2
L

sin2 ( nπx
L )

x = 0 x = L
ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

ψ5(x)



Problem

Calculate the probability of finding the particle between  
                         for the n = 3 state. 

P = ∫
L/3

0
|ψn(x) |2 = ∫

L/3

0

2
L

sin2 ( nπx
L ) dx

x = 0 x = L
ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

ψ5(x)

0 < x < L/3

P = 1
3

Problem

Calculate the probability of finding the particle between  
                         for the n = 1 state. 

P = ∫
L/3

0
|ψn(x) |2 = ∫

L/3

0

2
L

sin2 ( nπx
L ) dx

x = 0 x = L
ψ1(x)

ψ2(x)

ψ3(x)

ψ4(x)

ψ5(x)

0 < x < L/3

P = ?



Summary
We have solved the time-independent Schrödinger 
equation for the infinite potential well. Here are some 
key points:

• The solution is an infinite sequence of standing 
waves          , each with energy  

• These solutions are called the quantum states of the 
infinite potential well. 

• The integer n is the quantum number that labels the 
states.  

• The quantum number n equals the number of half 
wavelengths present in the standing wave function. 
As n increases, one must “squeeze in” more 
wavelengths, thus increasing the particle energy.

ψn(x) En


