The Schrödinger Equation (Part 1)

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar\frac{\partial\Psi}{\partial t}$$

Kinetic
Energy + Potential
Energy = Total
Energy

Wave Function

Postulate: Particles are described by a complex-valued wave function $\Psi(x, t)$. Properties of the wave determine the physical properties of the particle.

Wavelength of the wave function determines the particle's momentum:

$$p = \frac{h}{\lambda} \qquad p = \hbar k$$

Frequency of the wave function determines the particle's energy:

$$E = hf$$
 $E = \hbar\omega$

Q: How do you "do physics" with a wave function?

A: You need a wave equation that tells the wave how to behave.

Math Interlude: Partial Derivative

A partial derivative considers changes in one variable at a time. All variables not in the derivative are treated as constants.

Example:
$$\frac{\partial}{\partial x}(ax^2t^3) = at^3\frac{\partial}{\partial x}(x^2) = 2axt^3$$

 $\frac{\partial}{\partial t}(ax^2t^3) = ax^2\frac{\partial}{\partial t}(t^3) = 3ax^2t^2$
 $\frac{\partial}{\partial y}(ax^2t^3) = 0$

Example

Determine if traveling waves of the form $\psi(x, t) = Ae^{i(kx-\omega t)}$ are solutions to the following wave equation:

$$\frac{\partial^2 \psi}{\partial x^2} = \frac{1}{v_p^2} \frac{\partial^2 \psi}{\partial t^2}$$

Schrödinger's equation

(Conservation of energy for wave functions)

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar\frac{\partial\Psi}{\partial t}$$

m = particle mass

 $\Psi(x, t)$ = wave function

U(x) = potential energy defining the system

Traveling Wave Solution to Schrödinger's Equation with Constant Potential U_o

$$-\frac{\hbar^2}{2m}\frac{\partial^2\Psi(x,t)}{\partial x^2} + U(x)\Psi(x,t) = i\hbar\frac{\partial\Psi}{\partial t} \qquad \qquad U(x) = U_0$$

Show that the complex, traveling wave $\psi(x, t) = Ae^{i(kx-\omega t)}$ is a solution to the Schrödinger equation (with constant potential U_0).

After plugging in the traveling wave, you should find:

This is just a statement of energy conservation!

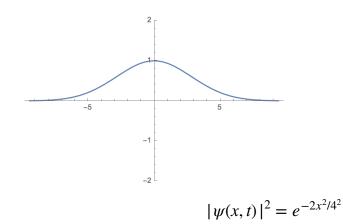
Properties of Time-Dependent Wave Functions $\psi(x, t)$

 $\psi(x, t)$ = wave function (complex-valued). Also called the "probability amplitude"

$$\psi(x,t) = e^{-x^2/4^2}e^{i(2x-3t)}$$

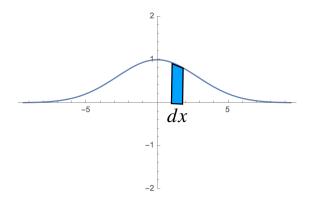
Properties of Time-dependent Wave Functions $\psi(x, t)$

 $|\psi(x,t)|^2 = \psi^*(x,t)\psi(x,t) =$ probability density (real-valued).



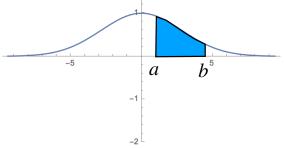
Properties of Time-dependent Wave Functions $\psi(x, t)$

 $|\psi(x,t)|^2 dx =$ probability of finding the particle on the interval (x, x + dx)

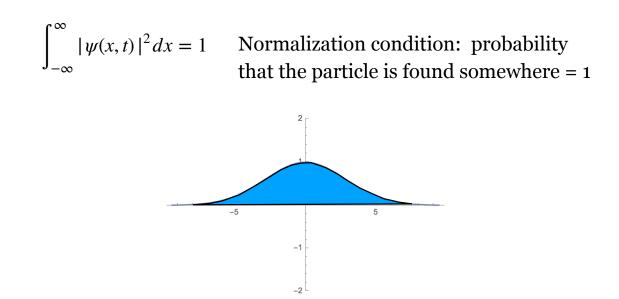


Properties of Time-dependent Wave Functions $\psi(x, t)$

 $\int_{a}^{b} |\psi(x,t)|^{2} dx = \text{ probability of finding the particle on the interval } a < x < b$

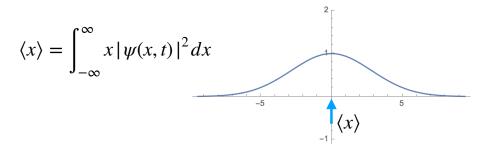


Properties of Time-dependent Wave Functions $\psi(x, t)$



Expectation Value

The expectation value of the particle's position given a wave function $\psi(x, t)$ is the average position that results from many measurements.

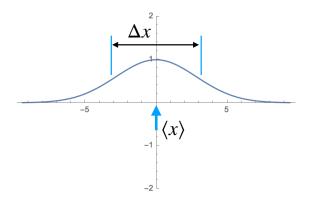


In general, the expectation of a function of any function f(x) is:

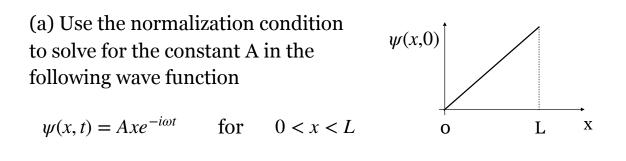
$$\langle f(x) \rangle = \int_{-\infty}^{\infty} f(x) |\psi(x,t)|^2 dx$$

Uncertainty

The measurement uncertainty in the position x of a particle is given by $\Delta x = \sqrt{\langle x^2 \rangle - \langle x \rangle^2}$



Example



(b) Find the expectation value $\langle x \rangle = \int_{-\infty}^{\infty} x |\psi(x,t)|^2 dx$

(c) What is the probability of finding the particle on 0 < x < L/2 ?

Properties of Time-dependent Wave Functions $\psi(x, t)$

 $\Psi(x,t)$ must be single-valued and continuous $\Psi(x,t)$ must be smooth (i.e. $\frac{d\Psi(x,t)}{dx}$ must be continuous) if the
potential energy curve U(x) has no spikes, $\Psi(x,t) \rightarrow 0$ when $x \rightarrow \pm \infty$

 $\Psi(x,t) \to 0$ when $U \to \infty$

Time-Independent Schrödinger Equation

In many physics applications, we are interested in standing wave solutions to the Schrödinger equation.

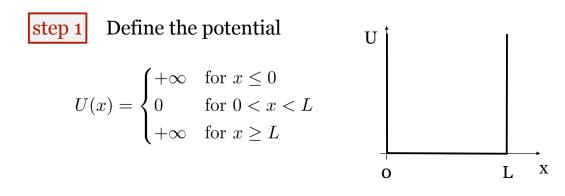
We look for solutions of the form: $\Psi(x, t) = \psi(x)e^{-i\omega t}$

Plug this expression for $\Psi(x, t)$ into the full timedependent Schrödinger equation to derive the Time-Independent Schrödinger Equation:

$$-\frac{\hbar^2}{2m}\frac{d^2\psi(x)}{dx^2} + U(x)\psi(x) = E\psi(x)$$

Method for Solving Time-Independent Schrödinger Equation (SE)

- Step 1. Define potential U(x), draw a picture and plug into SE
- Step 2. Solve SE or guess general solutions to the SE.
- Step 3. Write down boundary conditions.
- Step 4. Use boundary conditions to place constraints on unknown constants and coefficients.
- Step 5. Use boundary constraints to solve for energy levels E_n
- Step 6. Use normalization to solve for remaining unknown constants and write down final wave functions $\psi_n(x)$ associated with each energy level E_n



Inside the well, U(x) = 0

Infinite Potential Well: Particle in a Box

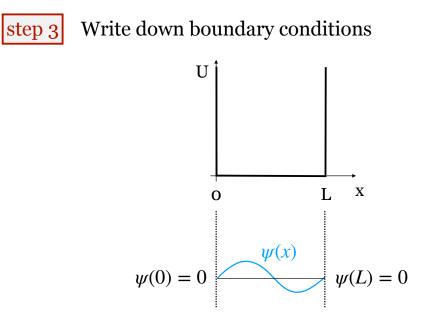
step 2

Solve Schrödinger equation

$$\frac{d^2\psi(x)}{dx^2} = -\frac{2m}{\hbar^2}E\psi(x)$$

General Solution: $\psi(x) = A \sin(kx) + B \cos(kx)$

where:
$$k = \frac{\sqrt{2mE}}{\hbar}$$



Infinite Potential Well: Particle in a Box

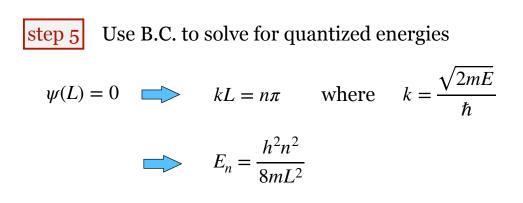
step 4 Use B.C. to constrain unknown constants

General Solution: $\psi(x) = A\sin(kx) + B\cos(kx)$ $k = \frac{\sqrt{2mE}}{\hbar}$

Boundary Conditions:

 $\psi(0) = 0 \implies B = 0 \implies \psi(x) = A\sin(kx)$

$$\psi(L) = 0$$
 \longrightarrow $A\sin(kL) = 0$ \implies $kL = n\pi$



Tidy up solution: $\psi(x) = A \sin(kx)$ where $kL = n\pi$

$$\psi_n(x) = A \sin\left(\frac{n\pi x}{L}\right)$$

Infinite Potential Well: Particle in a Box

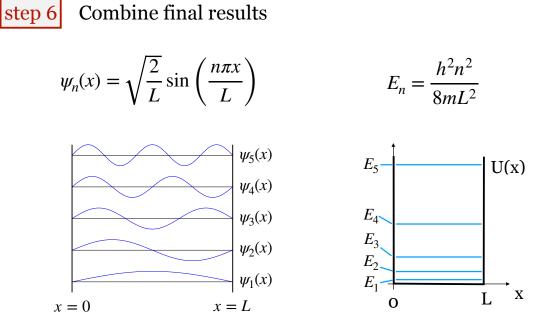
step 6 Use normalization to solve for constant A

$$\int_{-\infty}^{\infty} |\psi(x)|^2 dx = 1$$

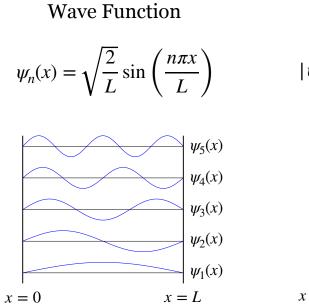
Integrate over domain from o to L and solve for A:

$$\int_0^L A^2 \sin^2\left(\frac{n\pi x}{L}\right) dx = 1$$

Use
$$\int \sin^2 ax dx = \frac{x}{2} - \frac{\sin(2ax)}{4a}$$
 to find $A = \sqrt{\frac{2}{L}}$

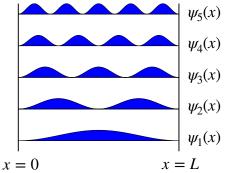


Infinite Potential Well: Particle in a Box



Probability Density

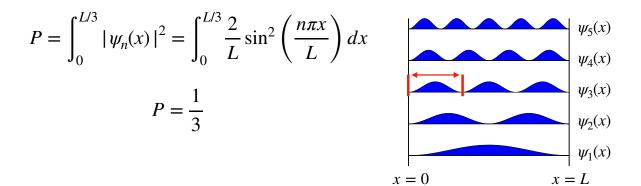
$$|\psi_n(x)|^2 = \frac{2}{L}\sin^2\left(\frac{n\pi x}{L}\right)$$



Problem

Calculate the probability of finding the particle between

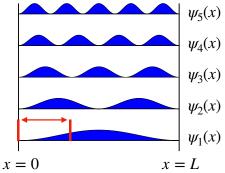
0 < x < L/3 for the n = 3 state.



Problem

Calculate the probability of finding the particle between 0 < x < L/3 for the n = 1 state.

$$P = \int_{0}^{L/3} |\psi_n(x)|^2 = \int_{0}^{L/3} \frac{2}{L} \sin^2\left(\frac{n\pi x}{L}\right) dx$$
$$P = ?$$



Summary

We have solved the time-independent Schrödinger equation for the infinite potential well. Here are some key points:

- The solution is an infinite sequence of standing waves ψ_n(x), each with energy E_n
- These solutions are called the quantum states of the infinite potential well.
- The integer n is the quantum number that labels the states.
- The quantum number n equals the number of half wavelengths present in the standing wave function. As n increases, one must "squeeze in" more wavelengths, thus increasing the particle energy.