
Chapter 7 - The Hydrogen Atom in Wave Mechanics
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7.1 Schrodinger Equation with Coulomb Potential

Schrodinger created the first fully quantum-mechanical model of the hydrogen atom in 1926. Be-
cause the electron can orbit around the proton in any direction, we need to use the three-dimensional
time-independent Schrodinger equation:
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2m
∇2ψ + Uψ = Eψ,

where ∇2ψ is the Laplacian operator. The solution to this equation is simplest in spherical coor-
dinates (see Figure 1), so the Laplacian becomes (yikes!):
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The potential energy of an electron and a proton at a distance r is

U(r) = − 1
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r
.

Thus, the partial differential equation that Schrodinger was able to solve (with help from his friend
and mathematician Hermann Weyl) is
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ψ(r, θ, φ) = Eψ(r, θ, φ).

The solution to this equation becomes a bit more manageable when one realizes that standing wave
solutions are separable along the three spherical coordinates:

ψ(r, θ, φ) = R(r)Θ(θ)Φ(φ),

where the r, θ and φ dependences are confined to the R, Θ and Φ functions respectively.
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Figure 1: Spherical coordinate system.

7.2 Quantum Numbers

Through the process of solving the Schrodinger equation and setting boundary conditions, three
quantum numbers emerge, one for each degree of freedom of the electron. They are:

n principal quantum number 1, 2, 3, ...
l angular momentum quantum number 0, 1, 2, ..., n− 1
ml magnetic quantum number 0,±1,±2, ...,±l

7.2.1 Principal Quantum Number

The principle quantum number determines the energy levels of the atom:

En = − me4

32π2ε20~2
1

n2
.

or

En = −13.6eV
1

n2
.

These energy levels agree with the prediction of the classical-quantum Bohr model discussed in
Chapter 6.

7.2.2 Angular Momentum Quantum Number

The angular momentum quantum number l quantizes the magnitude of the angular momentum
vector ~L as follows:

|~L| =
√
l(l + 1) l = 0, 1, 2, ..., n− 1.

While Bohr’s energy levels agreed with the Schrodinger’s energy levels, his assumptions about
angular momentum (i.e. that L = n~) did not hold up. In Bohr’s model, each electron “orbit” has
a distinct angular momentum: the ground state n = 1, first excited state n = 2 and second excited
state n = 3 have angular momentum values L = ~, 2~, 3~. However, in Schrodinger’s model, each
energy level n has n− 1 angular momentum values:
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Figure 2: Angular momentum states for l = 2 (d orbital).

n = 1 l = 0 s orbitals
n = 2 l = 0, 1 s and p orbitals
n = 3 l = 0, 1, 2 s, p, d orbitals

Chemists and atomic physicists often label the angular momentum states using spectroscopic
notation, where the l = 0 state is called the “s orbital,” the l = 1 state is called the “p orbital,” the
l = 2 state is called the “d orbital,” etc. Notice also that the magnitude of the angular momentum
vector depends on the angular momentum quantum number in a nonlinear way:

s orbital p orbital d orbital f orbital
l = 0 l = 1 l = 2 l = 3

L = 0 L =
√

2~ L =
√

6~ L = 2
√

3~

To a good approximation, the energy of the electron does not depend on the the angular
momentum quantum number l. This is true for classical orbits as well. Two planets with identical
semi major axes will have the same total energy even if their eccentricities (how elliptical their
orbits are) are different. In classical physics the angular momentum determines the shape and
eccentricity of the orbit.

7.2.3 Magnetic Quantum Number

Knowing the magnitude of the angular momentum |~L| as specified by the angular momentum
quantum number l doesn’t tell you anything about the direction it points in space. Classically, to
know ~L you would have to know two more pieces of information: either two components such as
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Figure 3: Angular momentum states for p, d and f orbitals.

Lz and Lx or two angles θ and φ describing the direction in which it points. However, in quantum
mechanics, it turns out that you cannot know all three components of the angular momentum of
the electron simultaneously (this is another form of the Heisenberg uncertainty principle). All you
can know is the magnitude of the angular momentum vector |~L| and one of its components. By
convention, we call this component the z component, i.e. Lz. The magnetic quantum number
tells us that the z component of the angular momentum vector is quantized and lies in the range
[−l,+l]:

Lz = ml~ ml = 0,±1,±2, ...,±l.

Thus, the possible magnetic quantum numbers for different angular momentum states are

s orbital l = 0 ml = 0
p orbital l = 1 ml = −1, 0,+1
d orbital l = 2 ml = −2,−1, 0,+1,+2
f orbital l = 3 ml = −3,−2,−1, 0,+1,+2,+3

Knowing both |~L| and Lz means that you can know the angle θ the angular momentum vector
points with respect to the z axis, but not the azimuthal angle φ around the “equator.” In other
words, you can specify a “cone” within which the angular momentum vector must lie, but you
cannot know the position with the cone (see Figures 2 and 3). The angle from the “pole” is

θ =
Lz

|~L|
=

ml√
l(l + 1)

.

7.2.4 All Together Now (So Far)

Let’s put all the quantum numbers together in one place. The quantum numbers look like the
following for the first three energy levels:
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n = 1 l = 0 (s orbital) ml = 0

n = 2 l = 0 (s orbital) ml = 0
l = 1 (p orbital) ml = 0 ±1

n = 3 l = 0 (s orbital) ml = 0
l = 1 (p orbital) ml = 0 ±1
l = 3 (d orbital) ml = 0 ±1 ±2

Because the energy of the atom only depends on the principal quantum number, we see that
the n = 2 and n = 3 energy levels are degenerate, with 4-fold and 9-fold degeneracy, respectively.
Later in this chapter we’ll see that the spin of the electron adds an additional quantum state, so
the actual degeneracy is 2, 8, and 18 for the n = 1, 2, and 3 levels.

7.3 Magnetic Dipole Moment

We know from classical physics that a current loop will create a magnetic field (see Figure 4). The
magnetic dipole moment ~µ of the field is defined as

µ = IA

where I is the current and A is the area of the loop. We can express the magnetic dipole moment
in terms of the angular momentum of the orbiting particle as follows. The current of a moving
charge may be calculated as

I ≈ ∆q

∆t

=
q

2πr/v

=
qv

2πr

The magnitude of the magnetic moment is then

µ = IA

=
( qv

2πr

)
πr2

=
q

2m
mvr

=
q

2m
L

Written as a vector and substituting q = −e, this becomes

~µ = − e

2me

~L.

Notice that the negative charge of the electron causes the magnetic moment to point in the opposite
direction from the angular momentum vector.
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Figure 4: Magnetic moment of a negative charge moving in a circular orbit.

Because the orbital angular momentum is quantized, the orbital magnetic moment will also be
quantized. The z component of the magnetic moment is

µz = − e

2me
Lz

= − e

2me
ml~

= −ml µB

where the Bohr magneton is defined as

µB =
e~
2m

= 9.274× 10−24 J/T.

7.4 Dynamics of Magnetic Dipoles

The behavior of a magnetic dipole placed in an external magnetic field will depend on the geometry
of the field:

1. Uniform magnetic field - The potential energy of a magnetic dipole in an external, uniform
magnetic field is given by U = −~µ · ~B. Thus, when the dipole is aligned with the field the
potential energy is at a minimum. When the dipole is anti-aligned, the potential energy is
maximum. However, the dipole feels not net force from the external field.

2. Non-uniform magnetic field When the external magnetic field is nonuniform, the dipole
feels a net force Fz ≈ µz ∂Bz

∂z .

7.5 Spin Angular Momentum

In quantum mechanics, we encounter two kinds of angular momentum:

1. Orbital Angular Momentum, L - Picture the orbital motion of the electron around the
nucleus. The orbital quantum number always takes on integer values: l = 0, 1, 2, ...

2. Spin Angular Momentum, S - Picture a planet spinning on its axis (but electrons don’t
literally “spin”). Spin is intrinsic angular momentum of fundamental particles. The spin
quantum number of an electron is s = 1/2.
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All the ideas we have developed so far for orbital angular momentum ~L translate over to spin
angular momentum ~S.

The spin of the electron introduces a new degree of freedom into our picture of the atom. While
the magnitude of the electron’s spin is fixed, its component along the z axis can take on two values:
Sz = ms~ = ±(1/2)~. We often call the ms = +1/2 state the “spin up” state and the ms = −1/2
state as the “spin down” state.

Orbital Spin

Quantum number l = 0, 1, 2, 3, ... s = 1/2

Magnitude of angular momentum vector |~L| =
√
l(l + 1) ~ |~S| =

√
s(s+ 1) ~

z component of angular momentum Lz = ml~ Sz = ms~
magnetic quantum number ml = 0,±1,±2, ...,±l ms = ±1/2

7.6 Hydrogen Wave Functions

Solving the three-dimensional Schrodinger equation in spherical coordinates for the Coulomb po-
tential requires a bit of work. Even Erwin Schrodinger looked for help from his mathematician
friend, Hermann Weyl, when he originally solved the problem. As mentioned in section 7.1, the
energy eigenfunctions (or standing waves) are separable in terms of the three spherical coordinates.
We can write the solution like this

ψn,l,ml
(r, θ, φ) = Rn,l(r)Y

ml
l (θ, φ)

where Rn,l(r) is called the radial wave function and Y ml
l (θ, φ) are known as spherical harmonics.

The spherical harmonics are separable in terms of θ and φ:

Y ml
l (θ, φ) = Θl,ml

(θ)Φml
(φ).

Examples of hydrogen wave functions for the first three energy levels are given in Figure 5.

7.7 Probability Densities

In one-dimensional wave mechanics, we saw that the probability of finding a particle in an infinites-
imal element dx is P (x) = |ψ(x)|2dx. Thus, the probability of finding it on the interval (a, b) is

P (a, b) =
∫ b
a |ψ(x)|2dx. In spherical coordinates, we replace the infinitesimal line element dx with

a volume element
dV = r2 sin θ dr dθ dφ

The probability of finding our electron in this volume element is

P (r, θ, φ) = |ψn,l,ml
(r, θ, φ)|2r2 sin θ dr dθ dφ

The condition for normalization (i.e. that there is a 100% chance of finding the electron somewhere)
is ∫ π

0

∫ 2π

0

∫ ∞
0
|ψn,l,ml

(r, θ, φ)|2r2 sin θ dr dφ dθ = 1.
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Hydrogen Wave Functions

Figure 5: Radial and angular wave functions for the hydrogen atom for the first three energy levels.
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After substituting the radial and angular wave functions, we may write the probability of finding
the electron in a finite volume of space bounded by r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2 and φ1 ≤ φ ≤ φ2 as

P (r1, r2; θ1, θ2;φ1, φ2) =

∫ r2

r1

|Rn,l(r)|2r2 dr
∫ θ2

θ1

|Θl,ml
(θ)|2 sin θdθ

∫ φ2

φ1

|Φml
(φ)|2dφ.

All three integrals are independent. All three wave functions are also independently normalized, so
the following are true: ∫ ∞

0
|Rn,l(r)|2r2 dr = 1∫ π

0
|Θl,ml

(θ)|2 sin θdθ = 1∫ 2π

0
|Φml

(φ)|2dφ = 1.

7.7.1 Radial Probability Density

If we only care about calculating the probability of finding the electron as a function of its distance
away from the nucleus, then we can integrate out the angular part of the wave function. This gives
us the radial probability density:

P (r)dr = |Rn,l(r)|2r2 dr
∫ π

0
|Θl,ml

(θ)|2 sin θdθ

∫ 2π

0
|Φml

(φ)|2dφ.

or
P (r)dr = |Rn,l(r)|2r2 dr.

The probability of finding the electron between two radii is

P (r = a, r = b) =

∫ b

a
|Rn,l(r)|2r2 dr.

7.7.2 Radial Expectation Value

Suppose you could measure the distance from the electron to the atomic nucleus. You repeat the
experiment over and over. The average of these measurements is the expectation value. We can
calculate the expectation value as follows:

〈r〉 =

∫ ∞
0

rP (r)dr

=

∫ ∞
0

r|R(r)|2r2dr

=

∫ ∞
0

r3|R(r)|2dr
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7.8 Useful Integrals

You may find the following integrals helpful when doing calculations with the radial probability
density: ∫

xne−axdx = −e
−ax

a

[
xn +

nxn−1

a
+
n(n− 1)xn−2

a2
+ ...+

n!

an

]
and ∫ ∞

0
xne−axdx =

n!

an+1
.
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