
Lecture 11 - The Schrodinger Equation (Part I)
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11.1 Introduction

In the last chapter, we saw that particles can exhibit wave phenomena. In this chapter we will see
that the wave function for a particle is described by a complex-valued function Ψ(x, t). For a free
particle whose wave function takes the form of traveling wave, we found that the frequency of the
wave function determines the energy of the particle:

E = hf or E = ~ω.

Similarly, the wavelength of the wave function determines the momentum of the particle:

p =
h

λ
or p = ~k.

11.2 Time-Dependent Schrodinger Equation

The question now is how to “do physics” with wave functions. For example, if an electron is trapped
inside an atom or a quantum dot, how can we predict how it will behave? Erwin Schrodinger worked
out the details when he derived a wave equation controlling the dynamics. This wave equation is
called the Schrodinger equation. In one dimension it takes the form:

− ~2

2m

∂2Ψ(x, t)

∂x2
+ U(x)Ψ(x, t) = i~

∂Ψ

∂t
,

where m is the mass of the particle and U(x) is the potential energy of the system. This equation is
essentially a statement of conservation of energy for wave functions. The quantum physicist specifies
a potential energy function U(x) defining the system of interest and then works out techniques for
solving this equation. The presence of the imaginary unit i on the right-hand-side of the equation
means that only complex-valued wave functions are solutions to the time-dependent Schrodinger
equation, i.e. real-valued functions are not solutions.
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11.3 Harmonic Traveling Waves

We’ll start by looking at the following complex, traveling wave:

Ψ(x, t) = Aei(kx−ωt).

is a solution to the time-dependent Schrodinger equation: First, evaluate the time derivative:

∂Ψ

∂t
= −iωAei(kx−ωt)

= −iωΨ.

Similarly, the spatial derivatives are:

∂Ψ

∂x
= ikAei(kx−ωt)

= ikΨ

and

∂2Ψ

∂x2
= (ik)2Aei(kx−ωt)

= −k2Ψ

Let’s assume the potential energy is constant, U(x) = U0, and substitute these derivatives into
the time-dependent Schrodinger equation:

− ~2

2m
(−k2Ψ) + U0Ψ = (i~)(−iωΨ),

or
~2k2

2m
+ U0 = ~ω.

What do we make of this result? It will start to look more familiar once we substitute p = ~k
and E = ~ω:

p2

2m
+ U0 = E.

We see that this result is just a statement of conservation of energy for wave functions. Important
note: the relations p = ~k and E = ~ω only work for free particles that are spread out as harmonic
traveling waves.

11.4 Time-Independent Schrodinger Equation

In many cases, we wish to find standing wave solutions to the Schrodinger equation. Standing
waves have the form

Ψ(x, t) = ψ(x)e−iωt or Ψ(x, t) = ψ(x)e−iEt/~

where ψ(x) contains the spatial form of the wave and the eiωt factor contains the time-dependent
“phase”. We have also written this expression in terms of the total energy of the particle E by
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substituting ω = E/~. By plugging this equation into the time-dependent Schrodinger equation,
we can cancel out the time dependence to derive the time-independent Schrodinger equation:

− ~2

2m

d2ψ(x)

dx2
+ U(x)ψ(x) = Eψ(x).

These standing wave solutions are also called the energy eigenfuctions for the potential U(x). Each
unique solution ψn(x) will correspond to an energy En. The subscript n has been introduced to
help us keep track of the solutions. In many cases, a given potential will have an infinite number
of energy eigenfunctions and spectrum of energies En.

11.5 Properties of Wave Functions

Before we explore solutions to the time-independent Schrodinger equation, we will first outline
some general properties of the wave function:

1. Ψ(x, t) = complex-valued wave function. The wave function is also called the “probability
amplitude” for reasons that will be seen shortly. The wave function itself cannot be directly
observed. What can be observed is the probability density (see next item).

2. |Ψ(x, t)|2 = probability density associated with the wave function. It is a real-valued function
that tells you the probability of where you will find the particle. Just like any complex
valued function, the modulus squared is equal to the product of the function with its complex
conjugate: |Ψ(x, t)|2 = Ψ∗Ψ.

3. All wave functions must be normalized, meaning∫ +∞

−∞
|Ψ(x, t)|2dx = 1.

This integral gives the probability that the particle exists anywhere, so assuming the particle
exists, the probability must be unity. We can also calculate the probability of finding the
particle in a particular region, say on the interval x ∈ (a, b). This probability is

P (a, b) =

∫ b

a
|Ψ(x, t)|2dx = 1.

4. The wave function must be continuous and single valued.

5. The wave function must be smooth, meaning the first spatial derivative of the wave function,
dΨ/dx must be continuous, if the underlying potential is smooth.

6. The wave function must go to zero when x→ ±∞.

7. The wave function must be zero wherever the potential energy is infinite: Ψ(x) = 0 when
U(x) =∞.
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11.6 Method for Solving the Time-Independent Schrodinger Equation

Typically, you will have a potential energy function U(x) that defines the problem. The goal is to
find the energy eigenfunctions ψn(x) and corresponding energy eigenvalues En that are solutions
to the Schrodinger equation. If you have taken a course on linear algebra, you may recognize this
type of problem as an eigenvalue problem. Here are some general steps:

Step 1. Begin by writing the time-independent Schrodinger equation with the potential
energy U(x) included.

Step 2. Magically come up with the general solution to the equation. Different solutions may
apply to different regions in space. For example, classically allowed and classically forbidden
regions may have different solutions. This process takes experience and/or knowledge ODEs.
Typically, you will be guided through this step.

Step 3. Use boundary conditions such as lim
x→±∞

ψ(x) = 0 to exclude or restrict the general

solutions. Boundary conditions also may be used to join piece-wise continuous functions.

Step 4. Solve for the allowed energy eigenvalues En by using results from the boundary
constraints.

Step 5. Use the normalization condition to evaluate unknown constants.

Step 6. Collect your results including the wave functions ψn(x) and energy eigenvalues En.
All done, although its always a good idea to sit back and contemplate what it all means.

11.7 Constant Potential Energy

A number of interesting problems can be constructed using piece-wise constant potentials. Let
the potential energy of the particle be a constant U0 in some region of interest. The Schrodinger
equation may then be rewritten as

d2ψ(x)

dx2
= −2m(E − U0)

~2
ψ(x).

When the energy of the particle is greater than the potential energy, i.e. E > U0, the solution is

ψ(x) = A sin(kx) +B cos(kx) where k =

√
2m(E − U0)

~

When the energy of the particle is less than the potential energy, i.e. E < U0, the solution is

ψ(x) = A′ek
′x +B′e−k

′x where k′ =

√
2m(U0 − E)

~

When E > U0, the particle is in a classically allowed region and the wave function exhibits
oscillatory behavior. The wavelength of the oscillations grows in proportion to λ ∝ (E − U0)

−1/2.
Thus, as the energy of the particle increases, the wavelength decreases.

When E < U0, the particle is in a classically forbidden region and the wave function exhibits
exponentially decaying behavior. The farther the energy drops below the potential U0, the quicker
the function decays causing it to penetrate less into the forbidden region.
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11.8 Infinite Potential Well (a.k.a. Particle in a Box)

We imagine a 1D potential well with U = 0 between 0 < x < L and U =∞ outside of that region:

U(x) =


+∞ for x ≤ 0

0 for 0 < x < L

+∞ for x ≥ L

We follow the steps outlined in section 5.6:

Step 1. Inside the well, U(x) = 0 so the Schrodinger equation may be written as

d2ψ(x)

dx2
= −2mE

~2
ψ(x).

Step 2. The general solution was given in section 5.6:

ψ(x) = A sin(kx) +B cos(kx) where k =

√
2mE

~

Step 3. Because the potential equals infinity at the edges of the well, we have two boundary
conditions:

Left: ψ(0) = 0

Right: ψ(L) = 0.

Apply the left boundary condition, ψ(0) = 0:

ψ(0) = A sin(0) +B cos(0)

0 = B.

Thus we see that B = 0 and the solution is reduced from the general case to:

ψ(x) = A sin(kx).

Apply the right boundary condition, ψ(L) = 0:

ψ(L) = A sin(kL) = 0

This is true when
k =

nπ

L
.

Step 4. Solve for energy eigenvalues by equating the values of k found in steps 2 and 3:

√
2mE

~
=
nπ

L

gives the energies to be

En =
~2π2n2

2mL2
=

h2n2

8mL2
.
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Step 5. We evaluate the constant A using normalization:∫ L

0
|Ψ(x, t)|2dx = 1.

The integral is evaluated over the domain on which the wave function is defined, i.e. from 0 to L.∫ L

0
A2 sin2

(nπx
L

)
dx = A2

[
x

2
− sin(2(nπ/L)x)

4(nπ/L)

]L
0

= A2

[
L

2

]

Thus, we find that

A =

√
2

L
.

Step 6. Finally, we combine our results. The standing wave solutions called energy eigenfunctions
are

ψn(x) =

√
2

L
sin
(nπx
L

)
n = 1, 2, 3, ...

and the corresponding energy eigenvalues are

En =
h2n2

8mL2
n = 1, 2, 3, ...

And now for the most important step: interpreting the results and understanding what it
all means. We have derived an infinite set of standing waves. Each standing wave ψn(x) has a a
corresponding energy En. These solutions are called the quantum states (or energy eigenstates)
of the infinite potential well. The integer n is the quantum number that labels the states. These
allowed energy values En are also called energy levels. The energies of the quantum states increase
as En ∝ n2. The smallest energy corresponding to n = 1 is called the ground state and the other
states are called excited states. Notice that for each step up the “ladder” of quantum states,
the wave function is compressed a bit more to make room for one more half wavelength: i.e. the
number of half wavelengths in the wave function just equals the quantum number n.

Imagine placing a marble in a frictionless box. If we give it an initial velocity it will roll back and
forth in the box bouncing off the walls indefinitely. We can give the marble any amount of kinetic
energy by starting if off with any velocity we choose K = 1

2mv
2. However, quantum mechanics

says something strange happens when we shrink the marble and size of the box down to an atomic
scale. We see that the “marble” bounces around in the box with a predetermined and quantized
set of energies.

For example, the energy levels of an electron placed inside a 1 nm wide box are En = 0.376 eV n2.
We see that E1 = 0.376 eV, E2 = 0.376 · 22 = 1.50 eV, E3 = 0.376 · 32 = 3.37 eV, etc. In other
words, an electron can be placed into an quantum state with a kinetic energy of 0.376 eV or 1.50
eV but nothing in between, i.e. a kinetic energy of 1.0 eV is not allowed by quantum physics. This
weirdness is a direct result of the “waviness” of quantum particles. Also notice that in the lowest
state E1, i.e. the ground state, the electron still has kinetic energy. In other words, if you place an
electron in a box it cannot just sit at rest with zero kinetic energy, it has to bounce around!! This
fact is a direct result of the Heisenberg uncertainty relation: because the particle is trapped in the
box ∆x ≈ L and ∆p > ~/∆x.
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