

de Broglie Wave - 1924

Relativistic equation for massless particle:

$$E = \sqrt{(pc)^2 + (mc^2)^2}$$

$$E = pc$$

Energy of a photon: $E = hf = \frac{hc}{\lambda}$

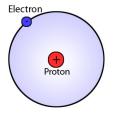
de Broglie suggests this wavelength applies to both massless photons and particles with mass (Nobel Prize 1929) Example: de Broglie wavelength of an ant

mass =
$$0.1 \text{ g} = 10^{-4} \text{ kg}$$

velocity = $1 \text{ cm/s} = 10^{-2} \text{ m/s}$

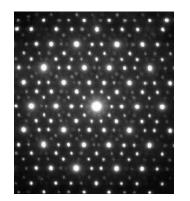
Find the ant's de Broglie wavelength

 $KE \approx 1 \text{ eV}$ m = 0.511 MeV



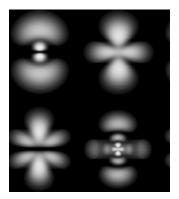
Find the electron's de Broglie wavelength

Evidence for de Broglie Waves



diffraction of electrons through a crystal

electron microscope resolution



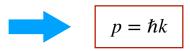
quantum wave mechanics

"h bar"

We define the following:
$$\hbar = \frac{h}{2\pi} = 1.055 \times 10^{-34} \text{ J s}$$

Why? It comes up a lot. For example:

Write momentum in terms of wavenumber $k = \frac{2\pi}{\lambda}$



Frequency of a de Broglie wave

For waves: $\lambda f = v_p$ where v_p is the phase velocity

Problem: we don't know what v_p is

Instead, we try the expression for energy of a photon:

E = hf

Write in terms of the angular frequency: $\omega = 2\pi f$

$$E = \hbar \omega$$

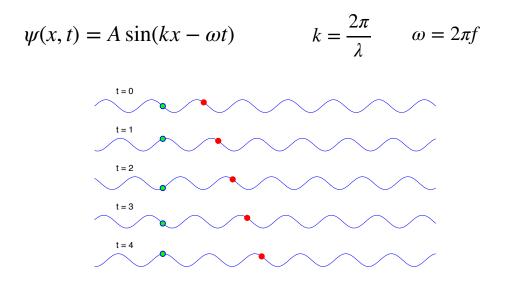
Energy and Momentum of a de Broglie wave

$$p = \frac{h}{\lambda}$$
 $p = \hbar k$

$$E = hf$$
 $E = \hbar\omega$

All physical properties of a particle are "encoded" in the wave function.

Traveling Wave



Phase Velocity

Pick a point on the wave and track it so phase remains constant

$$kx - \omega t = \phi_0 = \text{const.}$$

$$x = \frac{\phi_0}{k} + \frac{\omega}{k} t$$

$$x = x_0 + v_p t$$

$$v_p = \frac{\omega}{k} = \lambda f$$

$$v_p = \frac{\omega}{k} = \lambda f$$

Problem: Find the phase velocity of a de Broglie wave in terms of the particle velocity v

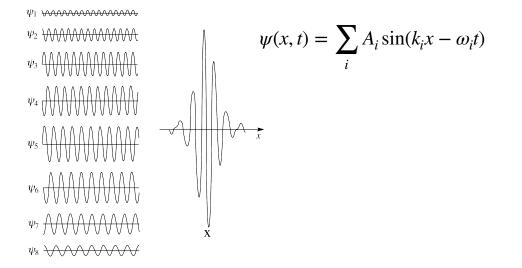
use the definition:
$$v_p = \frac{\omega}{k} = \lambda f$$

Answer:
$$v_g = \left(\frac{c}{v}\right)c$$

always greater than the speed of light!!

Wave Packet

Wave packets are constructed from the superposition of two or more traveling waves



Superposition of two traveling waves

$$\psi(x, t) = A_1 \sin(k_1 x - \omega_1 t) + A_2 \sin(k_2 x - \omega_2 t)$$

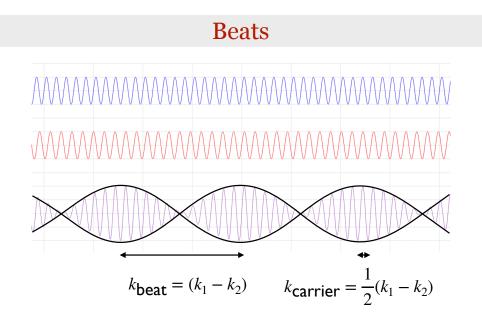
First consider two purely spatial waves with equal amplitudes:

 $\psi(x, t) = A\sin(k_1x) + A\sin(k_2x)$

Use trig identities to show

$$\psi(x,t) = 2A \cos \left[\frac{1}{2} (k_1 - k_2) x \right] \sin \left[\frac{1}{2} (k_1 + k_2) x \right]$$

Low frequency
modulating envelope
 $k_{\text{beat}} = (k_1 - k_2)$
High frequency carrier
wave
 $k_{\text{carrier}} = \frac{1}{2} (k_1 - k_2)$

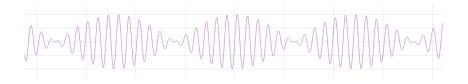


Superposition of two traveling waves

$$\psi(x,t) = A_1 \sin(k_1 x - \omega_1 t) + A_2 \sin(k_2 x - \omega_2 t)$$

Phase velocity (of carrier wave) $v_p = \frac{\omega_1 + \omega_2}{k_1 + k_2}$

Group velocity (of modulating wave) $v_g = \frac{\omega_1 - \omega_2}{k_1 - k_2}$



Dispersion Relation

In a dispersive medium, the phase velocity varies as function of the wavenumber. The function $\omega(k)$ is called the dispersion relation.

Group Velocity

Velocity of the envelope of a wave packet.

$$v_g = \frac{d\omega}{dk}$$

Problem: Find the group velocity of a de Broglie Wave

Use the definition: $v_g = \frac{d\omega}{dk}$

Answer: $v_g = v$

Problem: An electron has a de Broglie wavelength of 2 pm. Find: k, p, v_p , v_g

Momentum:
$$p = \frac{h}{\lambda} = \frac{hc}{\lambda} \frac{1}{c} = \frac{1240 \text{ eV nm}}{2 \times 10^{-3} \text{ nm}} \frac{1}{c} = 0.62 \text{ MeV} / \text{ c}$$

Kinetic Energy:

$$E = \sqrt{(pc)^2 + (mc^2)^2} = \sqrt{(0.62 \text{ MeV} / \text{c})^2 + (0.511 \text{ MeV})^2} = 0.803 \text{MeV}$$
$$K = E - mc^2 = 0.803 \text{MeV} - 0.511 \text{ MeV} = 0.292 \text{ MeV}$$

Phase velocity:
$$v_p = \frac{c}{v}c$$

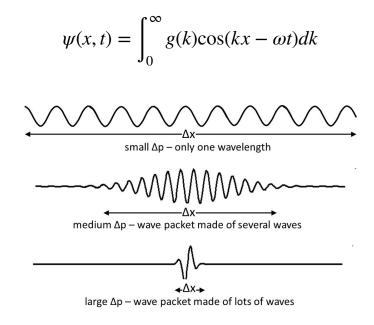
need v: $E = \gamma mc^2 = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$ $\frac{v}{c} = \sqrt{1 - \left(\frac{mc^2}{E}\right)} = 0.771$
 $v_p = \frac{1}{0.771}c = 1.3 c$

Problem: An electron has a de Broglie wavelength of 2 pm. Find: k, p, v_p , v_g

Group Velocity: $v_g = v = 0.771 c$

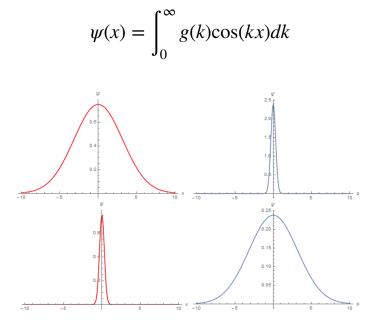
Spatially Localized Wave Packet

Add together an infinite number of waves with amplitudes g(k)



Spatially Localized Wave Packet

Add together an infinite number of waves with amplitudes g(k)



Heisenberg Uncertainty Principle

It is not possible to make a simultaneous determination of the position and the momentum of a particle with unlimited precision.

$$\Delta x \Delta p_x \ge \frac{1}{2}\hbar$$

It is not possible to make a simultaneous determination of the enerty and the time coordinate of a particle with unlimited precision.

$$\Delta E \Delta t \ge \frac{1}{2}\hbar$$

Particles can act like waves. But what waving?

Classical waves:	Power \propto Amplitude ²
Quantum waves:	Probability \propto Amplitude ²
	Prob $\propto \psi ^2$