
Lecture 4. Relativistic Momentum and Energy
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Summary. In the last set of lecture notes, we saw that many of our ideas from classical physics
must be modified to satisfy Einstein’s postulates. We saw that space and time “warp” into each
other leading to the phenomena of time dilation and length contraction. Even simple notions
like the addition of velocities must be modified to be compatible with relativity. The last set of
lecture notes dealt with relativistic kinematics (i.e. the description of motion). In this lecture, we
will explore relativistic dynamics to see how the notions of force, work, energy and momentum
translate to relativity.

4.1 Relativistic Momentum

Let’s imagine that two famous physicists (Fabiola Gianotti and Rosalyn Sussman Yalow) each have
a ball. At first they are at rest with respect to each other. They each throw their ball with speed v0
so the balls collide half way between them. We’ll assume a completely elastic collision so the balls
bounce directly back. After the collision, each ball will reverse its velocity, the total momentum will
remain zero and momentum will be conserved. This experiment is simple but offers little insight
into the nature of relativistic momentum.

Let’s now consider the same collision, except that Rosalyn and Fabiola will be in relative motion
to each other (see Figure 1). Define S as Rosalyn’s rest frame and S′ as Fabiola’s rest frame. Let’s
assume Fabiola moves with velocity u in the +x direction relative to Rosalyn. Fabiola and Rosalyn
each throw their ball with speed v0 directed along the −y′ and +y axes respectively. Let’s call the
velocity of Rosalyn’s ball ~v and the velocity of Fabiola’s ball ~w as measured in Rosalyn’s frame of
reference (S). In Gabiola’s frame (S′), the velocities are ~v′ and ~w′ respectively. The velocity of
Rosalyn’s ball in her frame and the velocity of Fabiola’s ball in her frame are easy to write down:

~v = (0, v0) ~w′ = (0,−v0).

Let’s now calculate the velocity of Fabiola’s ball in Rosalyn’s frame. The x component is simply
wx = u since w′x = 0 and the relative velocity of the reference frames is u. We use the the velocity
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Figure 1: Geometry of an elastic collision. Rosalyn and Rabiola are in relative motion along the x
axis.

addition formula to calculate wy:

wx = u

wy =
w′y

√
1− u2/c2

(1 + uw′x/c
2)

=
−v0

√
1− u2/c2

(1 + u · 0/c2)
= −v0

√
1− u2/c2

Notice that |wy| < v0, i.e. Rosalyn sees Fabiola throw her ball slower than she throws her own
ballv0 by a factor of 1/γ =

√
1− u2/c2. Similarly, Fabiola would see Rosalyn throw her ball slower

than she throws her on ball. This effect is due to time dilation between the moving frames.
The above calculation means that the classical momentum of Rosalyn’s ball is greater the

classical momentum of Fabiola’s ball (as measured in Rosalyn’s frame, i.e. mvy > m|wy|. Had
we done the calculation in Fabiola’s frame, we would have found the opposite, that m|w′y| > mv′y.
But according to Einstein’s first postulate, the relative momentum of the two balls cannot depend
on the reference frame chosen, so our classical definition of momentum ~p = m~v cannot apply to
relativity.

In order for the momenta of the two balls to be consistent, we must define the relativistic
momentum as

~p = γ(v)m~v (4.10)
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where we introduce

γ(v) =
1√

1− v2/c2
.

We should point out a few things:

• This gamma factor depends on the speed of the object v = |~v|, not the relative velocity
between our observers u. We add the functional depend γ(v) to distinguish this gamma
factor from γ (which depends on u not v). Don’t confuse them! If it helps, you can start
writing the normal gamma factor as γ(u) to tell them apart.

• The γ(v) term always depends on the total speed of the object, even if only a single momentum
component is being calculated. For example, if you want to find the x component of the
momentum you could write

px = γ(v)mvx,

where the gamma factor depends on v =
√
vxx + v2y + v2z .

• In the limit that v � c, γ(v) ≈ 1 and we recover the classical limit that ~p = m~v. As the
velocity approaches the speed of light, the relativistic momentum diverges to infinity.

Let’s test our our new definition of momentum and see if Rosalyn measures the same y-
component of momentum for each ball. In other words, we want to see if γ(w)mwy = −γ(v)mvy.
Here’s the momentum of Rosalyn’s ball in her reference frame:

py(Rosalyn) = γ(v)mvy =
mvy√

1− v2/c2
.

=
mv0√

1− v20/c2
,

where we used vy = v0 = v (why is this true?). And here’s the momentum of Fabiola’s ball in
Rosalyn’s frame:

py(Fabiola) = γ(w)mwy =
mwy√

1− w2/c2
.

We calculate the speed w from its components

w2 = w2
x + w2

y

= u2 + v20(1− u2/c2)

and substitute in for wy in the numerator to give

γ(w)mwy =
−mv0

√
1− u2/c2√

1− (u2 + v20(1− u2/c2)/c2

=
−mv0√
1− v20/c2

.

We see that
py(Fabiola) = −py(Rosalyn)

3



so the momenta sum to zero as they should.

Example 1. Find the fractional change in momentum when a particle doubles its speed
from (a) 0.1c to 0.2c. (b) Repeat for a change in speed from 0.4c to 0.8c.

Solution. We consider two velocities v1 and v2.

p2
p1

=
γ(v2)mv2
γ(v1)mv1

=
mv2/

√
1− v22/c2

mv1/
√

1− v21/c2

=
v2
v1

√
1− v21/c2
1− v22/c2

(a) When v1 = 0.1c and v2 = 0.2c.
p2
p1

= 2.03.

This result only differs from the classical prediction (which is p2/p1 = 2) by less than 2%.

(b) When v1 = 0.4c and v2 = 0.8c.
p2
p1

= 3.06.

In this case, the ratio is more than 50% greater than the classical prediction. As one approaches
the speed of light, the relativistic momentum diverges more and more from the classical prediction.

4.2 Newton’s Second Law

In classical physics, Newton’s second law may be written in two ways:

~F = m~a (classical - NOT relativistic)

or
~F =

d~p

dt
(both classical and relativistic). (4.11)

Interestingly, the famous equation F = ma is not consistent with relativity, while the second
equation (Equation 2.11) is. We will not prove that Equation 2.11 is relativistically valid, rather we
ask you to trust us when we say it is. However, we can show that the classical equation ~F = m~a is
not consistent with Equation 2.11 in relativity by simply plugging in the expression for momentum
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(Equation 2.10) into Equation 2.11. To keep things simple, we’ll stick to 1D:

F =
dp

dt

=
d

dt
[γ(v)mv]

=
d

dt

[
mv√

1− v2/c2

]
After differentiating and simplifying, we can show that

F = γ3(v)ma. (4.12)

Equation 4.12 is the relativistic version of F = ma. Note the presence of the γ3(v) factor.

• Problem 1 - Fill in the missing steps to derive F = γ3(v)ma.

4.3 Work

The classical definition of work W translates over to relativity without modification:

W =

∫ x

0
F (x)dx (both classical and relativistic). (4.13)

4.4 Relativistic Kinetic Energy

Our classical definition of kinetic energy does not work in relativity

K =
1

2
mv2 (classical).

To derive a relativistically valid expression for kinetic energy, we use the work-kinetic energy the-
orem, which remains valid in relativity:

∆K = Kfinal −Kinit = W =

∫ x

0
F (x)dx (both classical and relativistic). (4.14)

We use Equation 4.11 and “play around” with the differentials:

∆K =

∫ x

0
F (x)dx

=

∫ x

0

d

dt
(γ(v)mv)dx

=

∫ x

0
d(γ(v)mv)

dx

dt

=

∫ x

0
vd(γ(v)mv).
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Next, make the substitution q = γmv and integrate by parts
∫
vdq = vq−

∫
qdv. After simplifying

and setting K = ∆K (since Kinit = 0), one obtains

K = (γ − 1)mc2. (4.15)

Let’s evaluate the kinetic energy in two limits:

• When v = 0, γ = 1 so K = (1−1)mc2 = 0. Thus, we see that the kinetic energy is zero when
the object is at rest in the observer’s reference frame.

• In the limit that v → c, γ →∞ so the kinetic energy diverges to infinity. This says that if an
object could be accelerated to the speed of light, it would carry an infinite amount of kinetic
energy. Because this would require an infinite amount of work (work-kinetic energy theorem),
it is impossible to ever accelerate an massive object to light speed. Thus, the speed of light
serves as a universal speed limit.

• Problem 2 - Fill in the missing steps to derive K = (γ − 1)mc2.

• Problem 3 - Show that the relativistic kinetic energy reduces to K = 1
2mv

2 in the
limit that v << c.

4.5 Total Energy and Rest Energy

Equation 4.15 may be written as
K = γmc2 −mc2.

The two terms on the right-hand-side of the equation have special meaning. The first term is
defined as the total energy E of the object

E = γmc2 (4.16)

and the second term is defined as the rest energy E0, which leads to perhaps the most famous
equation in all of physics

E0 = mc2. (4.17)

After substituting these definitions and rearranging, we see that the total energy equals the kinetic
energy plus the rest energy of the object:

E = K + E0. (4.18)

When the velocity of the object is zero, its kinetic energy is zero (just as in classical physics).
However, we see that the object still has some energy E0 even when it is at rest. Einstein interpreted
this result to mean that mass and energy are fundamentally equivalent: mass may be converted
to energy and energy may be converted to mass. The rest energy E0 = mc2 may be thought of as
the energy “stored” in mass m. This equivalency also lets us write the mass of objects in units of
energy / c2. See the table below for some example particle masses.
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Particle Symbol mass (kg) mass (a.m.u.) mass (eV/c2)

electron e− 9.1093829× 10−31 kg 5.485799 u 0.5109989 MeV/c2

proton p 1.67262178× 10−27 kg 1.0072765 u 938.27205 MeV/c2

neutron n 1.67492735× 10−27 kg 1.0086649 u 939.56538 MeV/c2

4.6 Energy-Momentum Relationship

In classical physics we know that the kinetic energy and momentum are related by

K =
p2

2m
(classical).

This relation does not hold in relativity. However, we can derive a relationship between the total
energy E and momentum p that does work in relativity:

E2 = (pc)2 + (mc2)2 (relativistic). (4.19)

• Problem 4 - Starting with the definitions of the total energy E and momentum p
derive E2 = (pc)2 + (mc2)2.

4.7 Units

In high energy physics and particle physics, energy is often measured in units of electron volts (1
eV = 1.60× 10−19 J), with appropriate prefixes (1 keV = 103 eV, 1 MeV = 106 eV, 1 GeV = 109

eV, and 1 TeV = 1012 eV).
Because of Einstein’s statement of mass-energy equivalence E0 = mc2, mass may be written in

terms of energy. Thus eV/c2 is a unit of mass.
Similarly, we see that eV/c is a unit of momentum.

Example 2. Find the velocity of an electron that has a kinetic energy of 2 MeV.

Solution. We start with the equation for the kinetic energy (Equation 4.15) and solve for the
gamma term:

γ(v) = 1 +
K

mc2
.

= 1 +
2 MeV

0.511 MeV
= 4.91.

7



Now find the velocity based on this gamma term:

v =

√
1− 1

γ2
.

Plugging in for γ gives u = 0.892c

4.8 Massless Particles

Equation 4.19 gives an interesting result when the mass m of the particle is zero. This equation
tells us

E = pc (4.20)

when m = 0. In other words, massless particles with energy E carry momentum p = E/c. The
photon is the best-known example of a massless particle.

4.9 Highly Relativistic Particles

We define a highly relativistic particle as those whose kinetic energy is much greater than its rest
energy, i.e.

K >> mc2.

For such particles, K +mc2 ≈ K, so E = K +mc2 ≈ K. Thus the total energy is also much larger
than the rest energy

E >> mc2.

This means that the mc2 term in Equation 2.19 is small compared with E, so Equation 4.19
simplifies to

E ≈ pc. (4.21)

To a first approximation the energy-momentum relationship for highly relativistic particles (Equa-
tion 4.21) identical to that for a massless particle (Equation 4.20).

• Problem 5 - Find the velocity of a highly relativistic proton (in terms of c) such
that K = 10mc2. Compare the true momentum of the proton calculated from
E2 = (pc)2 + (mc2)2 with the approximation p = E/c. What fractional error in p
does this correspond to?
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