History of Modern Physics 1880-1930

Physicist	Nat.	date	Туре	Description			
Thomas Young		1801	P	Demonstrated the wave nature of light using the double-slit experiment			
Amedeo Avogadro		1811		Molecular theory of gasses. Gasses at the same temperature and volume contain the same number of molecules.			
Robert Brown		1827	P	Observed jittery motion of minute particles inside pollen grains (now called Brownian motion but previously observed by Jan Ingenhouse in 1784)			
James Maxwell		1873		Developed concise equations describing electricity and magnetism (Maxwell's equations). Predicts electromagnetic waves that travel at the speed of light.			
Albert Michelson		1887	P	Conducted the Michelson-Morely experiment in which he and Morley used an interferometer to show the ether does not exist.			
Johannes Rydberg	-	1888	P	Found an empirical formula describing the wavelengths of spectral lines produced by hydrogen. Rydberg constant is named for him.			
Wilhelm Röntgen		1895	P	Produced and detected x-rays (also called Röntgen rays), a new form of electromagnetic radiation. 1901 Nobel Prize.			
Pieter Zeeman		1896	P	Discovery of Zeeman effect. Many spectral lines can be sllit into multiple lines in the presence of a magnetic field. 1902 Nobel Prize.			
Henri Becquerel		1896	P	Discovery of radioactivity. 1903 Nobel Prize (shared with Marie and Pierre Curie).			
J.J. Thomson		1897	P	Discovery of the electron. Cathode ray experiments showed the rays are made of particles (electrons) ejected from atoms in the electrodes. 1906 Nobel Prize.			
Marie Curie		1898	P	Discovery of radioactive elements Polonium and Radium. 1903 Nobel Prize (shared withe Becquerel and Pierre Curie).			
Ernest Rutherford		1899	P	Discovery of alpha and beta rays. Showed that uranium gives off two kinds of radiation.			
Paul Villard		1900	P	Discovery of gamma rays. Showed that this form of radiation from radioactive decay was not electrically charged, but could not penetrate as far as x-rays.			
Lord Rayleigh		1900		Derivation of Rayleigh-Jeans law of radiation from a blackbody using thermo- dynamics. Extension to short wavelengths led to the "ultraviolet catastrophe"			
Max Planck		1900		Blackbody radiation formula. Assumed quantized energies for light waves $E=hf$, where h is Planck's constant. Resolved ultraviolet catastrophe			
Hendrick Lorentz		1904		Derived the Lorentz transformation to relating observers' measurements of space and time (later becomes part of Special Relativity). 1902 Nobel Prize.			
Albert Einstein		1905		Theory of Brownian motion: random motions are due to collisions with molecules			
Albert Einstein		1905		Theory of photoelectric effect: electromagnetic waves act like particles. 1921 Nobel Prize.			
Albert Einstein		1905		Special theory of relativity. One's measurements of space and time depend on one's relative motion to another observer. Equivalence of mass and energy			
Robert Millikan		1909	P	Millikan oil drop experiment. Measurement of the charge of the electron using falling oil drops in electric field. 1923 Nobel Prize.			
	-						

Charles Wilson		1911	P	Invention of the cloud chamber. Photographed particle tracks for α and β particles. 1927 Nobel Prize (shared with Compton).			
Ernest Rutherford		1911		Rutherford scattering of alpha particles from a gold foil. Evidence for atomic nucleus and the proton.			
William L. Bragg	*	1912	P	Bragg diffraction. Showed that x-rays exhibit diffraction patterns when they pass through crystal lattices. Analyzed crystal structure. 1915 Nobel Prize.			
Niels Bohr		1913		Bohr-Rutherford model of the atom. Electrons orbit central nucleus with quantized angular momenta. Reproduces Balmer spectrum. 1922 Nobel Prize.			
Albert Einstein		1916		General theory of relativity. Extends special relativity to include gravity and accelerating reference frames.			
Arthur Compton		1922	P	Compton effect. Showed that x-rays act like particles when they scatter off free electrons. 1927 Nobel Prize (shared with Wilson).			
Luis de Broglie		1922		Proposed wave nature of matter, thus creating field of wave mechanics.			
Wolfgang Pauli		1925		Formulated the Pauli exclusion principle, which says that no two electrons ca exist in the same quantum state.			
Werner Heisenberg		1925		Development of matrix mechanics, which was the first formalization of quantum mechanics. 1932 Nobel Prize.			
Erwin Schrödinger		1926		Wave mechanics approach to quantum physics. Schrödinger equation. Wave functions for hydrogen atom, harmonic oscillator. 1933 Nobel Prize.			
Max Born		1926		Probabilistic interpretation of wave function. 1954 Nobel Prize.			
George Thomson		1927	P	Demonstrated wave nature of electrons by diffracting them through gold foil. 1937 Nobel Prize.			
George Uhlenbeck		1927		Theoretical discovery of electron spin (with Samuel Goudsmit □. Provided explanation of doublets in spectral lines.			
Werner Heisenberg		1927		Uncertainty principle. Measurement of one paired physical quantity (e.g. position) introduces uncertainty in the other (e.g. momentum).			
Paul Dirac		1928		Dirac equation: extension of Schrödinger equation to includes special relativity. Explanation of electron spin and predicts antimatter. 1933 Nobel Prize.			
Carl Anderson		1932	P	Experimental discovery of antimatter (positron). Found particle tracks of positrons (produced by cosmic rays) in a cloud chamber. 1936 Nobel Prize.			
James Chadwick		1932	P	Discovery of the neutron. 1935 Nobel Prize.			
Otto Stern		1933		Stern-Gerlach experiment. Measured magnetic moment of the proton. Experimental verification of space quantization. 1943 Nobel Prize.			

Nationality:

Mustralia	France	Ireland	India	Switzerland
Austria	Germany	Israel	Netherlands	United Kingdom
Denmark	Hungary	Italy	Poland	United States

Type of discovery:

