
Lecture 2. Postulates of Special Relativity
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Summary. Einstein developed the special theory of relativity as a means of solving a number of
problems he saw in Maxwell’s equations of electrodynamics. In this lecture, we review Galilean
relativity, discuss the deficiencies Einstein saw in Maxwell’s equations, and present the Lorentz
transformations that replace Galilean transformations under special relativity.

2.1 Frames of Reference

A frame of reference is a coordinate system used to make observations of the world. We can
imagine attaching a reference frame to the classroom, to someone riding a bicycle or to an electron
traveling through space (see Figure 1, for example). An inertial reference frame is a reference
frame in which the law of inertia is valid, i.e. it is a frame that has zero acceleration. For most
experiments, we can consider the classroom to be an inertial reference frame. However, because
the classroom is attached to the Earth (which is spinning on its axis and orbiting around the Sun)
the classroom is actually accelerating slightly and is thus not a perfect inertial reference frame.
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Figure 1: Two inertial reference frames S and S′. We assume frame S′ is moving with velocity u
with respect to frame S
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2.2 Galilean Relativity

Galilean Relativity is based on the common-sense idea that space and time are independent con-
cepts, i.e. that the flow of time and extent of space do not depend on one’s position or motion.
Galilean relativity works just fine with Newton’s Laws and our every-day experience.

Let’s consider two inertial reference frames, one attached to Albert and and one attached to
Mileva. We will place Albert at the origin of his reference frame, and Mileva at the origin of hers
(see Figure 1). As Albert walks along, his reference frame moves with him. The same is true for
Mileva. One is always at rest with respect to one’s own reference frame. We’ll call Albert observer
O, his reference frame S, and the coordinates of an object measured in his frame (x, y, z). Similarly,
Mileva will be observer O′, her frame is S′, and the coordinates defining an object in her frame will
be (x′, y′, z′). We’ll also give each observer a stopwatch and call the reading on Albert’s watch t
and the reading on Mileva’s watch t′.

Let’s assume Mileva runs past Albert along Albert’s x axis. We’ll call her velocity relative to
him u. (What is Albert’s velocity relative to Mileva?) We will also assume both Albert and Mileva
start their stop watches the instant Mileva passes Albert. We set up the coordinate systems so
that Mileva’s x′ axis slides along Albert’s x axis. When t = 0, t′ = 0 and the S and S′ frames will
be coincident. Thus, at some time t later, the origin of Mileva’s frame will be at x = ut in Albert’s
frame (see Figure 2).

y0
<latexit sha1_base64="DedVXuzqohYwGt26TRQfrqg/Pf4=">AAAB6XicbVC7TsNAEFyHVwivACUUJyIEVWTTQBlBQ5kg8pASKzpf1skp57N1d0aKrPwBDQUI0fITfAcdHZ/C5VFAwkgrjWZ2tbsTJIJr47pfTm5ldW19I79Z2Nre2d0r7h80dJwqhnUWi1i1AqpRcIl1w43AVqKQRoHAZjC8mfjNB1Sax/LejBL0I9qXPOSMGivdjc66xZJbdqcgy8Sbk1Ll+KP2DQDVbvGz04tZGqE0TFCt256bGD+jynAmcFzopBoTyoa0j21LJY1Q+9n00jE5tUqPhLGyJQ2Zqr8nMhppPYoC2xlRM9CL3kT8z2unJrzyMy6T1KBks0VhKoiJyeRt0uMKmREjSyhT3N5K2IAqyowNp2BD8BZfXiaNi7Lnlr2aTeMaZsjDEZzAOXhwCRW4hSrUgUEIj/AML87QeXJenbdZa86ZzxzCHzjvP1b/j28=</latexit>

x0
<latexit sha1_base64="fzQOM3XmCMsoIkkF0vRHMJe6ZRc=">AAAB6XicbZC7SgNBFIbPeo3rLWppMxhEq7Bro40YtLGMYi6QLGF2cjYZMju7zMyKIQR8ABsLRWx9GHs738bJpdDEHwY+/v8c5pwTpoJr43nfzsLi0vLKam7NXd/Y3NrO7+xWdZIphhWWiETVQ6pRcIkVw43AeqqQxqHAWti7GuW1e1SaJ/LO9FMMYtqRPOKMGmvdPhy18gWv6I1F5sGfQuHi0z1/BIByK//VbCcsi1EaJqjWDd9LTTCgynAmcOg2M40pZT3awYZFSWPUwWA86ZAcWqdNokTZJw0Zu787BjTWuh+HtjKmpqtns5H5X9bITHQWDLhMM4OSTT6KMkFMQkZrkzZXyIzoW6BMcTsrYV2qKDP2OK49gj+78jxUT4q+V/RvvELpEibKwT4cwDH4cAoluIYyVIBBBE/wAq9Oz3l23pz3SemCM+3Zgz9yPn4AtLiO9g==</latexit>

u
<latexit sha1_base64="kBSFz4r7YufuyICpJ4ceJdtf7aA=">AAAB6HicbZC7SwNBEMbn4ivGV9TSZjEIVuHORhsxaGOZgHlAcoS9zVyyZm/v2N0TwhGwt7FQxNZ/xt7O/8bNo9DEDxZ+fN8MOzNBIrg2rvvt5FZW19Y38puFre2d3b3i/kFDx6liWGexiFUroBoFl1g33AhsJQppFAhsBsObSd58QKV5LO/MKEE/on3JQ86osVYt7RZLbtmdiiyDN4fS1Wfh8hEAqt3iV6cXszRCaZigWrc9NzF+RpXhTOC40Ek1JpQNaR/bFiWNUPvZdNAxObFOj4Sxsk8aMnV/d2Q00noUBbYyomagF7OJ+V/WTk144WdcJqlByWYfhakgJiaTrUmPK2RGjCxQpridlbABVZQZe5uCPYK3uPIyNM7Knlv2am6pcg0z5eEIjuEUPDiHCtxCFerAAOEJXuDVuXeenTfnfVaac+Y9h/BHzscPT7SOwg==</latexit>

S'y
<latexit sha1_base64="nt5D4Z/vND0YB+P5XzJ82Wb9phQ=">AAAB6HicbVC7TsNAEFzzDOEVoITiRIREFdk0UEbQUCYSeUiJFZ0v6+TI+WzdnZEsK19AQwFCtHwF30FHx6dweRSQMNJKo5ld7e4EieDauO6Xs7K6tr6xWdgqbu/s7u2XDg6bOk4VwwaLRazaAdUouMSG4UZgO1FIo0BgKxjdTPzWAyrNY3lnsgT9iA4kDzmjxkr1rFcquxV3CrJMvDkpV08+6t8AUOuVPrv9mKURSsME1brjuYnxc6oMZwLHxW6qMaFsRAfYsVTSCLWfTw8dkzOr9EkYK1vSkKn6eyKnkdZZFNjOiJqhXvQm4n9eJzXhlZ9zmaQGJZstClNBTEwmX5M+V8iMyCyhTHF7K2FDqigzNpuiDcFbfHmZNC8qnlvx6jaNa5ihAMdwCufgwSVU4RZq0AAGCI/wDC/OvfPkvDpvs9YVZz5zBH/gvP8A9nePPg==</latexit>

x
<latexit sha1_base64="HmfR3CBLvLPtZg3/lk5xqMfpnEw=">AAAB6HicbZC7SwNBEMbnfMbzFbW0WQyCVbiz0UYM2lgmYB6QhLC3mUvW7O0du3tiOAL2NhaK2PrP2Nv537h5FJr4wcKP75thZyZIBNfG876dpeWV1bX13Ia7ubW9s5vf26/pOFUMqywWsWoEVKPgEquGG4GNRCGNAoH1YHA9zuv3qDSP5a0ZJtiOaE/ykDNqrFV56OQLXtGbiCyCP4PC5ad78QgA5U7+q9WNWRqhNExQrZu+l5h2RpXhTODIbaUaE8oGtIdNi5JGqNvZZNARObZOl4Sxsk8aMnF/d2Q00noYBbYyoqav57Ox+V/WTE143s64TFKDkk0/ClNBTEzGW5MuV8iMGFqgTHE7K2F9qigz9jauPYI/v/Ii1E6Lvlf0K16hdAVT5eAQjuAEfDiDEtxAGarAAOEJXuDVuXOenTfnfVq65Mx6DuCPnI8fVECOxQ==</latexit>

S
(x, y)

<latexit sha1_base64="u94BbiGuqh8NHaG30jtihaS/rz0=">AAAB7HicbVBNSwMxEJ31s9avqkcvoUWoKGXXix6LXjxWcNtCu5Rsmm1Dk+ySZMVl6W/w4kERwZM/yJv/xvTjoK0PBh7vzTAzL0w408Z1v52V1bX1jc3CVnF7Z3dvv3Rw2NRxqgj1Scxj1Q6xppxJ6htmOG0nimIRctoKRzcTv/VAlWaxvDdZQgOBB5JFjGBjJb/6eJ6d9koVt+ZOgZaJNyeVerl79gEAjV7pq9uPSSqoNIRjrTuem5ggx8owwum42E01TTAZ4QHtWCqxoDrIp8eO0YlV+iiKlS1p0FT9PZFjoXUmQtspsBnqRW8i/ud1UhNdBTmTSWqoJLNFUcqRidHkc9RnihLDM0swUczeisgQK0yMzadoQ/AWX14mzYua59a8O5vGNcxQgGMoQxU8uIQ63EIDfCDA4Ale4NWRzrPz5rzPWlec+cwR/IHz+QMC8o+f</latexit>

(x0, y0)
<latexit sha1_base64="e6TPfnf6pPX2whTvLZSAUFBAp/Q=">AAAB7nicbVDLSgNBEOzxGeMr6tHLkCCJKGHXix6DXjxGMA9IljA7mU2GzM4uM7PisuQjvHhQRI9+jzf/xsnjoIkFDUVVN91dfiy4No7zjVZW19Y3NnNb+e2d3b39wsFhU0eJoqxBIxGptk80E1yyhuFGsHasGAl9wVr+6Gbitx6Y0jyS9yaNmReSgeQBp8RYqVV5LJ+n5dNeoeRUnSnwMnHnpFQrds8+AKDeK3x1+xFNQiYNFUTrjuvExsuIMpwKNs53E81iQkdkwDqWShIy7WXTc8f4xCp9HETKljR4qv6eyEiodRr6tjMkZqgXvYn4n9dJTHDlZVzGiWGSzhYFicAmwpPfcZ8rRo1ILSFUcXsrpkOiCDU2obwNwV18eZk0L6quU3XvbBrXMEMOjqEIFXDhEmpwC3VoAIURPMELvKIYPaM39D5rXUHzmSP4A/T5A8WskAE=</latexit>

P

x0
<latexit sha1_base64="fzQOM3XmCMsoIkkF0vRHMJe6ZRc=">AAAB6XicbZC7SgNBFIbPeo3rLWppMxhEq7Bro40YtLGMYi6QLGF2cjYZMju7zMyKIQR8ABsLRWx9GHs738bJpdDEHwY+/v8c5pwTpoJr43nfzsLi0vLKam7NXd/Y3NrO7+xWdZIphhWWiETVQ6pRcIkVw43AeqqQxqHAWti7GuW1e1SaJ/LO9FMMYtqRPOKMGmvdPhy18gWv6I1F5sGfQuHi0z1/BIByK//VbCcsi1EaJqjWDd9LTTCgynAmcOg2M40pZT3awYZFSWPUwWA86ZAcWqdNokTZJw0Zu787BjTWuh+HtjKmpqtns5H5X9bITHQWDLhMM4OSTT6KMkFMQkZrkzZXyIzoW6BMcTsrYV2qKDP2OK49gj+78jxUT4q+V/RvvELpEibKwT4cwDH4cAoluIYyVIBBBE/wAq9Oz3l23pz3SemCM+3Zgz9yPn4AtLiO9g==</latexit>

ut
<latexit sha1_base64="3cTpynS/Tg076cuc/6uztHOISWA=">AAAB6XicbZC7SgNBFIbPeo3rLWppMxgEq7Bro40YtLGMYi6QLGF2MpsMmZ1dZs4KYQn4ADYWitj6MPZ2vo2TS6GJPwx8/P85zDknTKUw6HnfztLyyuraemHD3dza3tkt7u3XTZJpxmsskYluhtRwKRSvoUDJm6nmNA4lb4SD63HeeODaiETd4zDlQUx7SkSCUbTWXYadYskrexORRfBnULr8dC8eAaDaKX61uwnLYq6QSWpMy/dSDHKqUTDJR247MzylbEB7vGVR0ZibIJ9MOiLH1umSKNH2KSQT93dHTmNjhnFoK2OKfTOfjc3/slaG0XmQC5VmyBWbfhRlkmBCxmuTrtCcoRxaoEwLOythfaopQ3sc1x7Bn195EeqnZd8r+7deqXIFUxXgEI7gBHw4gwrcQBVqwCCCJ3iBV2fgPDtvzvu0dMmZ9RzAHzkfPyTsj0A=</latexit>

x = x0 + ut
<latexit sha1_base64="I+l7ZTGQtk2WtrEk/Btp2dLxWUY=">AAAB7nicbVDLSgNBEOyNryS+oh69DAZREMKuF70IQS8eI5gHJEucncwmQ2Znl5leSQj5CC+Cinj1e7z5N04eB00saCiquunuChIpDLrut5NZWV1b38jm8ptb2zu7hb39molTzXiVxTLWjYAaLoXiVRQoeSPRnEaB5PWgfzPx649cGxGrexwm3I9oV4lQMIpWqg+uBidnKbYLRbfkTkGWiTcnxXIueXkAgEq78NXqxCyNuEImqTFNz03QH1GNgkk+zrdSwxPK+rTLm5YqGnHjj6bnjsmxVTokjLUthWSq/p4Y0ciYYRTYzohizyx6E/E/r5lieOmPhEpS5IrNFoWpJBiTye+kIzRnKIeWUKaFvZWwHtWUoU0ob0PwFl9eJrXzkueWvDubxjXMkIVDOIJT8OACynALFagCgz48wSu8OYnz7Lw7H7PWjDOfOYA/cD5/AAN9kNY=</latexit>

Figure 2: Position measurement of an object (a burrito) made from two coordinate frames S and
S′.

Now, let’s introduce a third object, say a burrito (again, see Figure 2). Albert will measure the
coordinates of the burrito as (x, y, z) and Mileva will measure its coordiantes as (x′, y′, z′). Because
of the way we defined the coordinates, y′ = y and z′ = z and x = x′+ut. Do these equations make
sense? If not, study Figure 2. Collecting these equations together and solving for x′, we arrive at
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the Galilean transformation equations:

x′ = x− ut
y′ = y

z′ = z

t′ = t. (2.1)

Notice that under this transformation, time flows at the same rate for each observer, i.e. t = t′,
Differentiating the above relationships and defining vx = dx/dt, v′x = dx′/dt, vy = dy/dt, etc.

gives a simple rule for adding velocities

v′x = vx − u
v′y = vy

v′z = vz. (2.2)

Returning to Figure 2, we can interpret vx as the velocity of the burrito as measured by Albert
and v′x is the velocity of the burrito as measured by Mileva. Again, u is the velocity of Mileva as
measured by Albert.

In general, if the S′ frame is moving with an arbitrary velocity ~u with respect to the S frame,
then the relationship between the velocity ~v of an object measured in the S frame and the velocity
~v′ measured in the S′ frame is

~v′ = ~v − ~u. (2.3)

These transformation equations define what we mean by Galilean Relativity.

Example 1. Relative Velocities.

Suppose Albert is driving down the freeway and Mileva passes him. Albert estimates that
Mileva it traveling 20 mph faster that he is. A Porsche passes them both. Albert guesses that
the Porsche was going about 50 mph faster than him. How fast is the Porsche moving relative to
Mileva?

Solution. Let’s make the following definitions:

• u = 20 mph = the velocity of Mileva relative to Albert

• vx = 50 mph = the velocity of the Porsche relative to Albert

• v′x = the velocity of the Porsche relative to Mileva

We use the Galilean velocity transformation equations to solve for v′x:

v′x = vx − u
= 50 mph− 20mph = 30 mph.
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This result should be fairly intuitive. Another way of saying it is that the velocity of the Porsche
as measured by Albert vx equals the velocity of the porsche as measured by Mileva v′x plus the
velocity of Mileva relative to Albert u, i.e.

vx = v′x + u.

or
vx = 30 mph + 20mph = 50 mph.

Example 2. Two Observers in a Rain Storm.
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The figure at right shows two observers, Al-
bert and Mileva, in a rain storm. In Albert’s S
frame, the rain falls straight down with a veloc-
ity ~v. Mileva moves to the right with velocity ~u
with respect to Albert. Find the velocity of the
rain in her reference frame.

Solution. Let’s define the speed of the rain
as v = |~v| and Mileva’s speed with respect to
Albert as u = |~u|. Conceptually, we know that
because Mileva’s motion is along the x axis, she
will measure the same downward velocity for the rain as does Albert. However, since she is moving
to the right with speed u respect to Albert, then the rain will have a −u component (to the left).
Using equation 2.3, we write the velocity of the rain in Mileva’s frame as:

~v′ = ~v − ~u,

or
v′ = −u î− vĵ.

Since the rain’s velocity is down and to the left, it will appear to come from a point up and
to the right from Mileva’s perspective. Thus, if she has an umbrella, she should hold it slightly in
front of her to keep from getting wet. The angle by which she must tilt her umbrella is given by

tanα =
−v′x
−v′y

=
u

v
.

Notice that the speed of the rain is higher for Mileva than for Albert. In Mileva’s frame, the
speed is

v′ =
√
u2 + v2

whereas for Albert it is just v. Does this make sense? Because Mileva is running into the raindrops,
they will hit her faster and harder. For example, if she is running to the right with the same speed
that the raindrops are falling, they will hit her with a speed of

√
2v, and they will appear to fall at

a 45◦ angle.
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2.3 What’s Wrong with Galilean Relativity?

The transformation equations defining Galilean relativity work great for everyday life and are a
fundamental part of Classical Physics. However, toward the end of the 19th Century, two problems
or “mysteries” surfaced that eventually led Einstien to abandon Galilean relativity and replace
it with his own theory of special relativity. Both problems are related to Maxwell’s theory of
electromagnetism. The first had to do with the speed of light (i.e. electromagnetic waves). The
second had to do with Faraday’s law.

2.4 The Problem with the Ether

In the last lecture, we were left with two seemingly contradictory results: (1) Maxwell’s equations
predicted that the speed of light was a constant (presumably with respect to some hypothetical
ether) and (2) Michelson and Morley’s experiment showed no evidence of the ether. We are left
with two possibilities that will be discussed in turn.

The first possibility was investigated by Lorentz. He assumed that the ether really did exist, but
that its affect on Michelson and Morley’s experiment was somehow “hidden.” Lorentz postulated
that perhaps when objects move relative to the ether, they contract just enough so that the light-
travel time along the two paths of Michelson’s interferometer will remain constant. He did the
math, and came up with the Lorentz transformations that we will discuss later in this lecture. Let
us be clear: Lorentz couldn’t let go of the idea that the ether was real so he figured out a way to
keep the ether, but at the expense of introducing a new physical effect, i.e. length contraction.

The second possibility was investigated by Albert Einstein. He did away with the ether all
together. But without the ether, what does it mean for the speed of light to be constant? What
is it constant relative to? Einstein postulated that the speed of light is constant with respect to
everyone and everything in the universe. Amazingly, if one accepts that assumption, then space
and time are related in exactly the way Lorentz postulated1.

The bottom line is that Einstein solved the first “mystery” discussed above by postulating that
the speed of light is constant for all observers. We’ll return to this in the next lecture to see what
implications this has.

2.5 The Problem with Faraday’s Law

Einstein was also troubled by a second apparent inconsistency in Maxwell’s equations. It had to do
with Faraday’s Law. Remember that Faraday’s law describes the creation of an electric field from
a time-varying magnetic field: ∮

~E · d~s = −dΦB

dt
.

Consider a magnet and a conducting ring in relative motion as shown in Figure 3. From the ring’s
perspective, the magnet is in motion. As the magnet approaches the ring, the magnetic flux through
the ring will change, inducing an electric field. This electric field will accelerate electrons in the
ring creating an induced current. However, from the perspective of the magnet, the ring is the
object in motion. In this case, the magnet is stationary, so no electric field will be produced. As

1We note that Einstein interprets the velocity u in the Lorentz transformations as the relative velocity between
two observers, wheras Lorentz interpreted it to be the velocity between an object and the ether. But we are getting
ahead of ourselves here.
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the ring moves to the right with velocity v it will carry its electrons along so they will also have a
velocity v. These moving electrons will feel a magnetic force q~v × ~B that will accelerate them to
generate the induced current. In both cases the relative motion between the magnet and the ring
creates an induced current in the ring. However in one frame of reference the current is due to an
electric field and in the other frame of reference it is due to a magnetic field. How can both of
these perspectives be correct?

F = qE
0

V

Conducting ring moves 
toward the magnet

Magnet moves toward the 
conducting ring

E

B

F = q E + v × B( )

electron

Current in conductor is driven 
by electric force on electron

V
B

F = q E + v × B( )
0

electron

Current in conductor is driven 
by magnetic force on electron

F = qv × B

Figure 3: Asymmetry in Faraday’s Law. The two panels show the same relative motion between
a magnet and a conducting ring. However, the nature of the physical force acting on electrons in
the ring appears to depend on one’s reference frame.

This apparent paradox was how Einstein chose to introduce his 1905 paper on special relativity,
titled “On the electrodynamics of moving bodies.” Here’s the first paragraph of his paper:

It is known that Maxwell’s electrodynamics–as usually understood at the present time–
when applied to moving bodies, leads to asymmetries which do not appear to be inherent
in the phenomena. Take, for example, the reciprocal electrodynamic action of a mag-
net and a conductor. The observable phenomenon here depends only on the relative
motion of the conductor and the magnet, whereas the customary view draws a sharp
distinction between the two cases in which either the one or the other of these bodies is
in motion. For if the magnet is in motion and the conductor at rest, there arises in the
neighbourhood of the magnet an electric field with a certain definite energy, producing
a current at the places where parts of the conductor are situated. But if the magnet
is stationary and the conductor in motion, no electric field arises in the neighbourhood
of the magnet. In the conductor, however, we find an electromotive force, to which in
itself there is no corresponding energy, but which gives rise–assuming equality of relative
motion in the two cases discussed–to electric currents of the same path and intensity as
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those produced by the electric forces in the former case.

What does Einstein mean when he says “The observable phenomenon here depends only on the
relative motion of the conductor and the magnet”? To what phenomenon is he referring?

We present this discussion now to give some insight into what motivated Einstein to develop
special relativity. We’ll return to it later in the course and give his solution to the problem. The
result is remarkable!

2.6 Einstein’s Postulates

Einstein based his special theory of relativity on two postulates. They are as follows:

1. The principle of relativity: The laws of physics are the same in all inertial reference frames.

2. The principle of the constancy of the speed of light: The speed of light in free space has the
same value c in all inertial reference frames.

The first postulate says that there are no preferred inertial reference frames. One cannot ask
if an object is “at rest” in an absolute sense. You may be at rest with respect to the classroom,
but someone flying on an airplane with a constant velocity is equally at rest with respect to their
reference frame (the airplane). Neither is “more at rest” than the other. One can only talk about
the relative motion between observers. This postulate is consistent with Newton’s laws, but not,
as we have seen, with Maxwell’s equations in their original form.

The second postulate seems impossible given our everyday intuition. If we think of light as
a particle (photon), then we would expect the velocity of the photon to obey Galilean relativity.
Imagine driving down the freeway at half the speed of light with your headlights on. An observer
at the side of the road might expect the speed of the photon to be 0.5c + c = 1.5c. But Einstein
says, “no!” Both the person in the car and by the side of the road will see the photon moving at
the same speed, c. If you think of light as a wave, then you would expect it to move at a speed
c relative to its medium (the hypothetical ether). But if an observer moves relative to the ether,
then the speed of the wave will be greater or lower than c depending on whether she moves with
or against the wave. Again, Einstein says “no!”. There is no ether. Everyone see the light wave
traveling at the same speed.

2.7 Lorentz Transformations

As mentioned above, Lorentz originally developed his transformations as a replacement to Galilean
relativity based on a false assumption. However, his final result turns out to be what one finds
under special relativity.

How can the speed of light be constant for all observers? The only way this is possible is if
we allow space and time to “warp” into one another when two observers are in relative motion.
The Lorentz transformations may be thought of as a replacement for Galilean relativity when one
adopts Einstein’s theory of special relativity. They describe the space and time coordinates of an
object observed by two observers, one in reference frame S and one in frame S′:
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x′ = γ(x− ut)
y′ = y

z′ = z

t′ = γ
[
t−
( u
c2

)
x
]
.

x = γ(x′ + ut′)

y = y′

z = z′

t = γ
[
t′ +

( u
c2

)
x′
]
. (2.4)

where

γ =
1√

1 + u2/c2

The left column transforms coordinates (x, y, z, t) measured in frame S to coordinates (x′, y′, z′, t′)
measured in frame S′. The right column represents the inverse transformation (going from frame
S′ to frame S).

The symbol γ is often called the “gamma factor”. Notice that in the limit that the relative
velocity between the frames is u � c, then γ → 1. In this limit, the equation for x′ reduces to
the Galilean transformation equation x′ = x− ut. Also notice that in this limit, the time equation
becomes t′ ≈ t. In other words, when velocities are much less than the speed of light, we “get
back” the normal, everyday equations that Galileo would approve of. Space and time become
“decoupled” as we normally experience them. As the relative velocity u approaches the speed of
light, the gamma factor blows up to infinity. Thus, the equations break down if one tried to travel
at the speed of light (i.e. when u = c).

2.8 Transformation of Intervals

The Lorentz transformations may also be used to transform intervals ∆t = t2−t1 and ∆x = x2−x1:

∆x′ = γ(∆x− u∆t)

∆y′ = ∆y

∆z′ = ∆z

∆t′ = γ
[
∆t−

( u
c2

)
∆x
]
.

∆x = γ(∆x′ + u∆t′)

∆y = ∆y′

∆z = ∆z′

∆t = γ
[
∆t′ +

( u
c2

)
∆x′

]
. (2.5)

2.9 Velocity Transformations

In Galilean relativity we derived the velocity transformation equations by directly evaluating the
derivatives dx/dt, etc. However, because both x and t are a bit more complicated, evaluating
this derivative would require more work. Instead, we can use the intervals to calculate an average
velocity, like this:

v′x =
∆x′

∆t′

Substitute in for the intervals ∆x′ and ∆t′:

v′x =
γ(∆x− u∆t)

γ
[
∆t−

(
u
c2

)
∆x
]
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Cancel the gamma factors:

v′x =
∆x− u∆t

∆t−
(
u
c2

)
∆x

Divide the top and bottom of this equation by ∆t and substitute vx = ∆x/∆t to give

v′x =
vx − u

1− vxu/c2
.

Repeating for v′y and v′z gives the the following Lorentz velocity transformation equations:

v′x =
vx − u

1− vxu/c2

v′y =
vy
√

1− u2/c2
1− vxu/c2

v′z =
vz
√

1− u2/c2
1− vxu/c2

vx =
v′x + u

1 + v′xu/c
2

vy =
v′y
√

1− u2/c2

1 + v′xu/c
2

vz =
v′z
√

1− u2/c2
1 + v′xu/c

2
. (2.6)

The left column solves for the velocities in the S′ frame while the right column solves the for S
velocities. These may be thought of as inverse transformations of one another. Notice that to go
from the left column to the right column one swaps primed with unprimed variables and replaces
the u with −u. Why does this work?

In the limit that u � c, we once again recover the Galilean transformation equations, i.e.
v′x ≈ vx − u, vy ≈ v′y, v′z ≈ vz.

Example 3. Relative Velocities (Using Relativity).

Let’s recalculate Example 1, this time using relativity. As in most relativity problems, it is best
to express velocities in terms of the speed of light. We calculate the following:

• u = 20 mph = 2.982× 10−8c = the velocity of Mileva relative to Albert

• vx = 50 mph = 7.456× 10−8c = the velocity of the Porsche relative to Albert

• v′x = the velocity of the Porsche relative to Mileva

Using the Lorentz velocity transformation gives

v′x =
vx − u

1− vxu/c2
.

On my calculator, the denominator is so close to unity that I just get v′x ≈ vx−u = 30 mph, which
is the same result we found using Galilean relativity. If we wanted a super accurate result, we could
use the binomial approximation (1− x)−1 ≈ 1 + x to write

1

1− vxu/c2
≈ 1 + vxu/c

2.
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We find that this factor is

1

1− vxu/c2
≈ 1 + (7.456× 10−8c)(2.982× 10−8c)/c2 = 1 + 2.22× 10−15

or
1

1− vxu/c2
≈ 1.00000000000000222.

Multiplying this factor by the numerator gives

v′x ≈ 30 mph + 6.67× 10−14mph.

We see that relativity isn’t important for normal, everyday speeds, unless you are interested in
very, very, very accurate results.

Example 4. Another Relative Velocity Problem.

Let’s try an example using velocities closer to the speed of light. Let’s assume Mileva passes
Albert at half the speed of light (0.5c) and Mileva sees the Porsche pass her at 90% the speed of
light (0.59c). How fast is the Porsche moving relative to Albert?

Solution. This time we want to find vx:

• u = 0.5c = the velocity of Mileva relative to Albert

• v′x = 0.9c = the velocity of the Porsche relative to Mileva

• vx = the velocity of the Porsche relative to Albert

We plug these values directly into the inverse velocity transformation equation for vx:

vx =
v′x + u

1 + v′xu/c
2

so,

vx =
0.9c+ 0.5c

1 + (0.9c)(0.5c)/c2
= 0.966c.

While Galilean relativity would predict that Albert sees the Porsche moving at 1.4c, the Lorentz
transformation shows that Albert “only” see it moving at 0.966c. The velocity addition formula
says that relative velocities will always be less than the speed of light! If one observer sees an
object moving at less than the speed of light, all observers will see it moving at less than the speed
of light. As we will see in a later lecture, the speed of light represents an ultimate speed limit in
the universe.

Example 5. Two Observers Watch a Beam of Light.

What happens to the velocity transformation equations when we imagine looking at a beam of
light? Let’s imagine Albert is driving with his headlights on. He sees the light leaving his headlights
at speed c. How fast will Mileva see the light beam?
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Solution. We set vx = c and we want to solve for v′x. This time, let’s just call Mileva’s speed
relative to Albert u, i.e. we’ll leave it general. The Lorentz velocity transformation equation gives

v′x =
vx − u

1− vxu/c2

We plug in vx = c to find

v′x =
c− u

1− cu/c2
.

Multiplying top and bottom by c gives

v′x =
c− u
c− u

c.

Simplifying gives
v′x = c.

Thus, Mileva sees the light beam traveling at the speed of light, just like Albert. This is of course the
result we should have gotten since Einstein’s second postulate was that all observers will measure
the velocity of light to be c, independent of the velocity of the object that produced the light. This
result is true for any velocity |u| < c. What happens when u = c?

Example 6. Rain Problem Revisited.

Let’s rework the rain problem in Example 2, this time using relativity and assuming the rain
drops are photons falling at the speed of light. We want to find the velocity components of the
photons in Mileva’s reference frame, assuming she is moving along the x axis relative to Albert.

Solution. Since Albert sees the photon falling straight down, we have vx = 0, vy = −c and
vz = 0. We want to find the photon velocity in Mileva’s frame, i.e. ~v′ = (v′x, v

′
y, v
′
z). The velocity

transformation equation for v′x gives:

v′x =
vx − u

1− vxu/c2
.

Plug in vx = 0:
v′x = −u.

The v′y component is

v′y =
vy
√

1− u2/c2
1− vxu/c2

Plug in vy = −c and vx = 0:

v′y = −c
√

1− u2/c2

The v′z component is

v′z =
vz
√

1− u2/c2
1− vxu/c2

Plugging in vz = 0 gives
vz = 0.
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Thus the velocity vector of the photon is

~v′ = (−u,−c
√

1− u2/c2, 0).

Notice that the speed of the photon is

v′ =
√
v′2x + v′2y + v′2z

v′ =
√
u2 + c2(1− u2/c2) + 0

or
v′ = c.

Thus we find the Mileva sees the photon moving at the speed of light as she should.
The aberration of the light is defined as the deviation of the angle from what Albert sees (in

this case, the angle measured from straight up, along the +y axis). We can calculate it as

tanα =
−v′x
−v′y

=
u

c
√

1− u2/c2
.

We can simplify this expression by substituting γ = 1/
√

1− u2/c2 to find

tanα = γ
u

c
.

If Mileva’s velocity relative to Albert is much less than the speed of light, then tanα ≈ α and γ ≈ 1
so

α ≈ u

c
,

consistent with the result in Example 2 for Galilean relativity. In the opposite limit, when Mileva’s
velocity relative to Albert approaches the speed of light, we find γ →∞ so α→ 90◦. In this case,
the light looks like it is coming from directly in front of her instead of above her.
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